Preparation of a superposition of squeezed coherent states of a cavity field via coupling to a superconducting charge qubit

Dagoberto S. Freitas

Resumo


The generation of nonclassical states of a radiation field has become increasingly important in the past years given its various applications in quantum communication. It has been recently proposed a way to engineer quantum states using a SQUID charge qubit inside a cavity with a controllable interaction between the cavity field and the charge qubit. Since decoherence is known to affect quantum effects uninterruptedly and decoherence process are working even when the quantum state is being formed, therefore, is interesting to envisage processes through which quantum superpositions are generated as fast as possible. We succeed in linearizing the Hamiltonian of the system through the application of an appropriate unitary transformation and for certain values of the parameters involved, we show that it is possible to obtain specific Hamiltonians. In this work we will use this approach for preparing superposition of two squeezed coherent states.


Palavras-chave


Superposição de estados; Estados coerentes comprimidos; Qubit de carga supercondutor.

Texto completo:

(ARTIGO EM PDF)

Referências


M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J.M. Raimond, S. Haroche. Phys. Rev. Lett. 77, 4887 (1996).

C. Monroe, D.M. Meekhof, B.E. King, D.J. Wineland. Science 272, 1131 (1996).

I. Buluta, S. Ashhab, F. Nori. Rep. Prog. Phys. 74, 104401 (2011).

Z.C. Xiang, S. Ashhab, J.Q. You, F. Nori. Rev. Mod. Phys. 85, 623 (2013).

Yu-xi Liu, L.F. Wei, F. Nori. Phys. Rev. A71, 063820 (2005).

Yu-xi Liu, L.F. Wei, F. Nori. Europhys. Lett. 67, 941 (2004).

J.Q. You, F. Nori. Phys. Rev. B68, 064509 (2003).

J.-Q. Liao, L.-M. Kuang. J. Phys. B40, 1845 (2007).

W.Y. Huo, G.L. Long. New Journal of Physics 10, 013026 (2008).

S. Ke-Hui. Chinese Phys. Lett. 26, 120302 (2009).

Y. Hu, L. Tian. Phys. Rev. Lett. 106, 257002 (2011).

L. Qing-Hong, F. Guang-Yu, W. Ji-Cheng, A.M. Ashfaq, L. Shu-Tian. Chinese Phys. Lett. 28, 060307 (2011).

A.M. Zagoskin, M. Grajcar, A.N. Omelyanchouk. Phys. Rev. A70, 060301 (2004).

M. Abdel-Aty. Optics Communications 282, 4556 (2009).

S. Ashhab, F. Nori. Phys. Rev. A81, 042311 (2010).

K.-H. Song, Y.-J. Zhao, Z.-G. Shi, S.-H. Xiang, X.-W. Chen. Optics Communications 283, 506 (2010).

C. Valverde, A.T. Avelar, B. Baseia. Physica A: Statistical Mechanics and its Applications 390, 4045 (2011).

C. Valverde, H.C.B. de Oliveira, A.T. Avelar, B. Baseia. Chinese Phys. Lett. 29, 080303 (2012).

L. Tang, F. Liu. Physics Letters A378, 2074 (2014).

Z. Zhou, S.-I Chu, S. Han. Phys. Rev. B66, 054527 (2002).

E. Paspalakis, N.J. Kylstra. J. Mod. Opt. 51, 1679 (2004).

Y. Liu, J.Q. You, L.F. Wei, C.P. Sun, F. Nori. Phys. Rev. Lett. 95, 087001 (2005).

J.G. Peixoto, M.C. Nemes. Journal of Optics B5, 265 (2002).

Y. Makhlin, G. Schon, A. Shnirman. Rev. Mod. Phys. 73, 357 (2001).

D.V. Averin, Y.V. Nazarov. Phys. Rev. Lett. 69, 1993 (1992).

Yu-Xi Liu, L. F. Wei, F. Nori. Europhys. Lett. 67, 941 (2004).

H. Moya-Cessa, A. Vidiella-Barranco, J.A. Roversi, D.S. Freitas, S.M. Dutra. Phys. Rev. A59, 2518 (1999).

M. Feng. Phys. Lett. A282, 230 (2001).

D.S. Freitas, M.C. Nemes. Modern Physics Letters B28, 1450082 (2014).

D.S. Freitas, A. Vidiella-Barranco, J.A. Roversi. Eur. Phys. J. D68, 193 (2014).

H. Moya-Cessa. Sci. Rep. 6, 38961 (2016).

S.M. Dutra, P.L. Knight, H. Moya-Cessa. Phys. Rev. A49, 1993 (1994).

L. Davidovich, M. Brune, J.M. Raimond, S. Haroche. Phys. Rev. A53, 1295 (1996).

M.C. de Oliveira, M.H.Y. Moussa, S.S. Mizrahi. Phys. Rev. A61, 063809 (2000).

J.M. Raimond, M. Brune and S. Haroche. Rev. Mod. Phys. 73, 565 (2001).




DOI: http://dx.doi.org/10.13102/sscf.v16i0.5836

Apontamentos

  • Não há apontamentos.


Direitos autorais 2020 Sitientibus Série Ciências Físicas