
AMANDA PRATO, RAFAEL C. DA SILVA, SIDNEI MATEUS, FABIO S. DO NASCIMENTO

Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Ribeirão Preto-SP, Brazil

Abstract

Social wasps are model organisms in studies related to evolution and social behavior origin. They show high degree of sinanthropism and due to their feeding habits, they play important ecological roles. However, wasps are considered dangerous, hence their nests are destroyed by humans. The aim of this study was to develop a technique for transferring the nests of some *Polybia* (Lepeletier, 1836) species located in human constructions to protected places. Nests were removed in the morning blowing ether into the nest entrance and closing them with cotton. They were separated from the substrate with a spatula. Nests were immediately attached to the new substrate with hot silicone glue and installed in the new place. Transferred nests were monitored for one month to verify the efficiency of the technique. Following the transference, individuals kept foraging and repairing/constructing new cells. Workers performing colony tasks are evidence that the technique was efficient and that the colony was adapted to the new local.

Keywords

Wasps management; Wasp conservation; Synanthropic wasps; Nest transference.

Article History

Edited by
Evandro Nascimento Silva, UEFS, Brazil

Received 22 November 2021
Initial acceptance 24 November 2021
Final acceptance 11 April 2022
Publication date 17 June 2022

Keywords

Wasp management; Wasp conservation; Synanthropic wasps; Nest transference.

Corresponding author

Amanda Prato
Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Av. Bandeirantes, 3900, Vila Monte Alegre, CEP: 14040-900 - Ribeirão Preto, São Paulo, Brazil.

E-Mail: amandaprato@usp.br

Epiponini is composed of swarming social wasps which include 19 genera (Carpenter & Marques, 2001; Carpenter, 2004; Noll et al., 2021). The most widespread genus is *Polybia*, with 56 species and 19 subspecies distributed across the Neotropical region (Jeanne, 1991; Carpenter et al., 2000; Noll et al., 2021). *Polybia* nests are sessile or suspended, constructed with mud or vegetable fiber with a brown or gray envelope. Nests have a circular entry located in the peripheral or in the lower region which is aligned to connect with internal combs (Richards, 1978; Wenzel, 1998). The secondary combs are sessile and attached to the preceding envelope, and the new cells are constructed in the lower portion (phragmocyttarous nests) (Wenzel, 1998; Somavilla, 2012; Noll et al., 2021; Barbosa et al., 2021).

These social wasps are model organisms in studies of evolution and social behavior origin due to the specialization expressed by workers (age polyethism) (Carpenter, 1991). Furthermore, they play important ecological roles in pollination, biological control, and as environmental bioindicators (Prezoto & Machado, 1999; Urbani et al., 2006; Rocha et al., 2010; Brock et al., 2021). This is possible due to their different dietary habits throughout their life. Larval stages consume mainly protein (caterpillars, adult forms of insects, or other arthropods), while adult wasps have a carbohydrate-based diet, such as nectar (Akre & Davis, 1978; Hunt, 1991, 1998; Spradbery, 1973).

As they display these roles, wasps can be useful to humans (Prezoto et al., 2007, 2011; Brock et al., 2021); many species are well adapted and associated with anthropogenic environments, exhibiting a high degree of sinanthropism (Fowler, 1983; Lima et al., 2000; Prezoto et al., 2007; da Silva et al., 2019; Barbosa et al., 2020, 2021). Despite their
positive roles in the environment, wasps are considered
dangerous (mainly because they sting and the misinformation
about their importance), hence their nests are destroyed by
humans (Fowler, 1983; Prezoto et al., 2007, 2011; Sumner et
al., 2018; Brock et al., 2021; Elisei et al., 2021). An alternative
to avoid accidents between wasps and humans, or to prevent
nest destruction, is to remove and transfer their nests to other
localities (Prezoto et al., 2007, 2011).

However, few attempts have been made to develop
techniques to transfer their nests (Prezoto et al., 2016). There
is still a lack of information regarding the basic biological
aspects of many species of social wasps, this is likely
associated with the fact that information is often difficult to
be collected due to the inaccessibility of their nesting sites (Barbosa et al., 2021).

Thus, the goal of this study was to develop an effective
technique for transferring nests of some Polybia species found
in human constructions to protected places, enabling their use
in behavior studies and avoiding their elimination.

This work was performed at São Paulo University,
Ribeirão Preto campus, SP – Brazil between 2016 and 2017.
For this study, four nests of Polybia occidentalis (Olivier,
1792), four of Polybia paulista (H. von. Ihering, 1896), one
of Polybia ignobilis (Haliday, 1836), and one of Polybia
fastidiosuscula de Saussure, 1854 were used (Fig 1) (Barbosa
et al., 2021; Somavilla & Carpenter, 2021).

The nests were removed in the morning between 06:00
and 09:00 a.m. To perform the nest transference procedure
we always wore latex gloves and beekeeper clothes. The first
step was to blow ether into the nest entrance and close it with
a cotton ball. The cotton can be moistened with ether; this is
an alternative when it is not possible to blow the chemical
compound (Fig 2). To start the removal (one to two people
to perform the procedure), the nests were carefully handled
in a way to prevent the external envelope structure to be
destroyed. Then, using a spatula, the envelope was separated
from them substrate where it was located. At last, the nests
were immediately attached to the new substrate (piece of
cardboard) with hot silicone glue (can be used hot glue gun
or a lighter to heat the glue) (Fig 2). All the nests were in
masonry construction, only one of the P. paulista nests was
in a metal structure and the P. fastidiosuscula was in a wood
substrate. Although not all the nests were attached to the same
substrate, all of them were transferred in the same way.

![Fig 1](image1.png)

Fig 1. Nests that were transferred - A, C, E, and G. Nests after the transfer - B, D, F, and H. Nests of the four Polybia species used in
this work. A and B – Polybia paulista; C and D – Polybia fastidiosuscula; E and F – Polybia ignobilis; G and D – Polybia occidentalis.

![Fig 2](image2.png)

Fig 2. Steps performed to transfer nests. A- Blowing ether in the nest entrance; B- Removing the nest from the old substrate; C- Putting glue
in the nest base; D- Attaching the nest in the new supporting; E- Taking the nest to the new place, and F- Attaching the nest in the new place.
Nests were then transferred to the new site (by walking or by car). The nests were transferred attached to the new substrate but without protection around. Because of the ether, the individuals were not aggressive during the course. The cardboard with nests was attached to a place preferably protected from the rain with silver tape. The minimum distance of transference between the original site and the new one was 1000 meters and the maximum was 2500 meters. During this process, there was only a small loss of individuals, the ones that already were over the nest surface when the procedure started. The nests that were transferred were monitored for one month to verify the efficiency of the procedure; furthermore, the *P. occidentalis* nests were used in other experiments, hence they were followed for three months (Prato, 2018; Prato et al., 2021).

Following the transference procedure, wasps continued to perform their foraging activities, started to repair the damages, and build new cells. Workers performing their usual activities are indicative that they were already used to the new place. Thus, it was confirmed that this technique is efficient because of the minimal invasive manipulation done to the transferred nests.

Polybia nests are built directly in the substrate (only the top part of the nest is in contact with the nesting place), differently from other Epiponini species, in which all the nest is attached to the structure, such as in the genera *Metapolybia* and *Synoeca* (Wenzel, 1998; Noll et al., 2021; Kudô, 2021). This facilitates the nest transference process for *Polybia* nests, as it is possible to separate their nests from the substrate without major damage.

An important factor that must be considered is the type of environment where the nest is located and the new area where the nest will be placed because each species has different preferences for substrate or feeding habits (Cruz et al., 2006; Santos et al., 2007; Almeida et al., 2014; da Silva et al., 2019; Barbosa et al., 2020, 2021). These features can directly affect the success of the colony (Dejean et al., 1998; Santos et al., 2007). Within *Polybia*, some species are generalist regarding the nesting substrate (Souza et al., 2012; Oliveira et al., 2017; Barbosa et al., 2020). Furthermore, *Polybia* is the genus of Epiponini that are more frequently found in anthropic environments (Detoni et al., 2018; da Silva et al., 2019). This generalist feature of nesting and adaptation to urban areas increases the chances to be in contact with humans (and accidents). However, they also represent good candidates for biological control studies in different crops, including urban agriculture. At last, it is possible to use them for investigating the influences of urbanization on generalist insects in comparison with preserved places.

Thus, this technique may work as an alternative to help to preserve those wasp species, which are often found in high-risk areas, by transferring them to more protected localities. Hence, the technique can be used as a tool to promote the conservation of them in anthropized environments. Lastly, our method will facilitate future studies using nests that were initially present in sites that are hard to reach or even relocate colonies to perform experiments in different environmental contexts.

Declaration of competing interest

None.

Authors’ Contributions

Conceptualization [Amanda Prato, Rafael Carvalho da Silva and Sidnei Mateus]; Methodology [Amanda Prato, Sidnei Mateus and Rafael Carvalho da Silva]; Formal Analysis and investigation [Amanda Prato, Rafael Carvalho da Silva, Sidnei Mateus and Fabio S. Nascimento]; Writing-original draft preparation [Amanda Prato and Fabio S. Nascimento]; Writing-review and editing [Amanda Prato, Rafael Carvalho da Silva, Sidnei Mateus and Fabio S. Nascimento].

Acknowledgments

This study was financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq - Process: 870320/1997-1, 405082/2018-5 and 307702/2018-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (RCS) and Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) undergrant APS [proc. nº 2016/11887-4], RCS [proc. nº 2016/08761-9 and 2018/22461-3], and FSN [proc. nº 2018/10996-0].

References

