A comparison between time of exposure, number of pitfall traps and the sampling cost to capture ground-dwelling poneromorph ants (Hymenoptera: Formicidae)

Camila Brito Gomes, Jorge L. P. Souza, Elizabeth Franklin


Using effective survey protocols to address the effects of environmental change are key to saving time, resources and costs. Although exhaustive sampling in any location has been shown as impractical, biodiversity sampling projects must capture sufficient information to show how species assemblages change with the environmental variables. This study investigated time of exposure in the field and the number of pitfall traps that efficiently sampled poneromorph ants in 30 250 m long plots across an area of 25 km2 of tropical rain forest in Brazil. The treatments used for the surveys included two days and 300 traps, 14 days and 300 traps, 14 days and 750 traps, and were considered the minimum, intermediate and maximum sampling efforts, respectively. We characterized each assemblage of ants in relation to a gradient of soil texture, terrain slope and leaf and branch litter volume, and then tested whether the ecological relationships observed with the maximum effort were comparable to data on intermediate and minimum sampling efforts. We also estimated the cost-effectiveness of using the protocols in survey programs. The assemblage of species sampled during 14 days  was similar to the assemblage captured during two days, indicating that the number of days influenced the assemblage similarity more than the number of sampling traps. All ecological patterns detected with the maximum effort were also captured with lesser sampling efforts. Overall, both the intermediate and minimum sampling efforts represented savings around 26˗40% of total project costs and 43˗45% of time to process the samples. We recommend that two days of trapping time combined with 300 pitfall traps is a highly effective shortcut for monitoring assessment, which can be applied to large-scale biodiversity surveys in tropical forests.


Amazon; ant survey; biomonitoring; cost-effectiveness; sampling protocol

Full Text:



Adis, J. & Schubart, H.O.R. (1984). Ecological research on arthropods in Central Amazonian forest ecosystems with recommendations for study procedures. In: Cooley, J.H., Golley, F.B. (Eds.), Trends in Ecological Research for the 1980s NATO Conference Series, Series I. Ecology. Plenum Press, New York, pp. 111–144.

Alonso, L. E. & Agosti, D. (2000). The ALL protocol: a standard protocol for the collection of ground-dwelling ants. In: D. Agosti., J. Majer, J., L. E. Alonso & T. R. Schultz (Eds.), Ants, Standard Methods for Measuring and Monitoring Biodiversity (pp. 204–206). Washington, DC: Smithsonian Institution Press.

Agosti, D. & Alonso, L.E. (2000). The ALL protocol. A standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer JD, Alonso L, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 204–206.

Agosti, D. & Johnson, N. F. (2005). Antbase. World Wide Web electronic publication. antbase.org, version (05/2005).

Andersen, A.N. & Majer, J.D. (2004). Ants show the way down under: invertebrates as bioindicators in land management. Frontiers in Ecology and the Environment, 2(6): 291–298.

Baccaro, F.B., Feitosa, R.M., Fernandez, F., Fernandes, I.O., Izzo, T.J., Souza, J.L.P. & Solar, R., 2015. Guia para os gêneros de formigas do Brasil, 1st ed. Editora INPA, Manaus. doi:10.5281/zenodo.32912

Baccaro, F.B., Souza, J.L.P., Franklin, E., Landeiro, V.L. & Magnusson, W.E. (2012). Limited effects of dominant ants on assemblage species richness in three Amazon forests. Ecological Entomology. 37: 1–12. doi: 10.1111/j.1365-2311.2011.01326.x

Baccaro, F.B., Rocha, I.F., del Aguila, B.E.G., Schietti, J., Emilio, T., do Veiga Pinto, J.L.P., Lima, A.P. & Magnusson, W.E. (2013). Changes in ground-dwelling ant functional diversity are correlated with water-table level in an Amazonian Terra Firme Forest. Biotropica, 45: 755–763. doi: 10.1111/btp.12055.

Bestelmeyer, B.T., Agosti, D., Leeanne, F., Alonso, T., Brandão, C.R.F., Brown, W.L., Delabie, J.H.C. & Silvestre, R. (2000). Field techniques for the study of ground-living ants: An Overview, description, and evaluation, p. 122–144. In D. Agosti, J. D. Majer, A. Tennant; T. R. Schultz (eds.), Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, D.C., USA.

Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71: 1–370.

Bolton, B., Alpert, G., Ward, P.S. & Naskrecki, P. (2006) Bolton’s Catalogue of Ants of the World: 1758-2005 [CD-ROM]. Harvard University Press, Cambridge, Massachusetts.

Borgelt, A. & New, T.R. (2006). Pitfall trapping for ants (Hymenoptera, Formicidae) in mesic Australia: what is the best trapping period? Journal of Insect Conservation, 10: 75-77. doi: 10.1007/s10841-005-7549-0.

Chauvel, A., Lucas, Y. & Boulet, R. (1987). On the genesis of the soil mantle of the region of Manaus, Central Amazonia, Brazil. Experientia, 43: 234–241.

Costa, F.R.C., Guillaumet, J.L., Lima, A.P. & Pereira, O.S. (2009). Gradients within gradients: the mesoscale distribution patterns of palms in a central amazonian forest. Journal of Vegetation Science, 20: 69–78, 2009. doi: 10.1111/j.1654-103.2009.05314.x.

Costa, F.R.C. & Magnusson, W.E. (2010). The need for large-scale, integrated studies of biodiversity – the experience of the Program for Biodiversity Research in Brazilian Amazonia. Natureza & Conservação, 8: 3–12. doi: 10.4322/natcon.00801001.

Delabie, J.H.C., Fisher, B.L., Majer, J.D. & Wright, I.W. (2000). Sampling effort and choice of methods. In: Agosti D, Majer JD, Alonso L, Schultz TR (eds) Ants: standard methods for measuring and monitoring biodiversity. Smithsonian Institution Press, Washington, pp 145–154.

Dogramaci, M., DeBano, S.J., Wooster, D.E. & Kimoto, C. (2008). A method for subsampling terrestrial invertebrate samples in the laboratory: Estimating abundance and taxa richness. Journal of Insect Science 10: 1–17. doi: 10.1673/031.010.2501.

Ellwood, M.D.F. & Foster, W.A. (2004). Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429: 549–551. doi: 10.1038/nature02560.

Evans, T.D. & Viengkham, O.V. (2001). Inventory time cost and statistical power: a case study of a Lao rattan. Forest Ecology and Management, 150: 313 322.

Fisher, B. L. (2005). A model for a global inventory of ants: a case study in Madagascar. Proceedings of the California Academy of Sciences, 56 (8): 86–97.

Fittkau, E.J. & Klinge, H. (1973). On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica, 5: 2–14.

Franklin, E., Moraes, J., Landeiro, V.L., Souza, J.L.P., Pequeno, P.A.C., Magnusson, W.E. & Morais, J.W. (2013). Geographic position of sample grid and removal of uncommon species affect multivariate analyses of diverse assemblages: The case of oribatid mites (Acari: Oribatida). Ecological Indicators, 34: 172–180. doi: 10.1016/j.ecolind.2013.04.024.

Gardner, T.A., Barlow, J., Araújo, I., Ávila-Pires, T.C. & Bonaldo, A.B. (2008). The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters 11, 139–150. doi: 10.1111/j.1461-0248.2007.01133.x.

Hölldobler, B. & Wilson, E. O. (1990). The Ants. Harvard University Press, Cambridge, UK, 746 p.

Guillaumet, J.L. (1987). Some structural and floristic aspects of the forest. Experientia 43: 241–251.

Ivanov, K. & Keiper, J. (2009). Effectiveness and bias of Winkler litter extraction and pitfall trapping for collecting ground-dwelling ants in northern temperate forests. Enviromental Entomology, 38: 1724–1736. doi: 10.1603/022.038.0626.

Jiménez-Valverde, A. & Lobo, J.M. (2006). Distribution determinants of endangered Iberian spider Macrothele calpeiana (Araneae, Hexathelidae). Environmental Entomology, 35: 1491–1499.

Landeiro, V.L., Hamada, N., Godoy, B.S. & Melo, A.S. (2010). Effects of litter patch area on macroinvertebrates assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia, 649: 355–363. doi: 10.1007/s10750-010-0278-8.

Luizão, R.C.C., Luizão, F.J., Paiva, R.Q., Monteiro, T.F., Sousa, L.S. & Kruijt, B. (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology, 10(5): 592–600. doi: 10.1111/j.1529-8817.2003.00757.x.

Magnusson, W. E., Lima, A. P., Luizão, R., Luizão, F., Costa, F. R. & Castilho, C. V. (2005). Rapeld: a modification of the gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica, 5 (2): 1-6.

McGlynn, T. P. (2006). Ants on the move: Resource limitation of a litter-nesting ant community in Costa Rica. Biotropica 38: 419–427. doi: 10.1111/j.1744-7429.2006.00153.x.

Menin, M., Lima, A. P., Magnusson, W. E. & Waldez, F. (2007). Topographic and edaphic effects on the distribution of terrestrially reproducing anurans in Central Amazonia: mesoscale spatial patterns. Journal of Tropical Ecology, 23: 539–547. doi: 10.1017/S0266467407004269.

Minchin, P.R. (1987). An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 69: 89–107.

Oliveira, P.Y. De, Souza, J.L.P., Baccaro, F.B. & Franklin, E. 2009. Ant species distribution along a topographic gradient in a "terra-firme" forest reserve in Central Amazonia. Pesquisa Agropecuária Brasileira. 44: 852–860.

Osborn, F., Goitia, W., Cabrera, M. & Jaffé, K. (1999). Ants, plants and butterflies as diversity indicators: comparisons between strata at six forest sites in Venezuela. Studies on Neotropical Fauna and Environment, 34: 59–64.

Peres-Neto, P. & Jackson, D. (2001). How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178. doi: 10.1007/s004420100720.

Pos, E., Andino, J.E.G., Sabatier, D., Molino, J.F., Pitman, N., Mogollón, H., Neill, D., Cerón, C., Rivas, G., Di Fiore, A., Thomas, R., Tirado, M., Toung, K.R., Wang, O., Sierra, R., García-Vilacorta, R., Zagt, R., Palacios, W., Aulestia, M. & ter Steege, H. (2014). Are all species necessary to reveal ecologically important patterns? Ecology and Evolution, 4: 4626–4636. doi: 10.1002/ece3.1246.

Pik, A. J., Oliver I. & Baettie A J. (1999). Taxonomic sufficiency in ecological studies of terrestrial invertebrtes. Australian Journal of Ecology, 24:555–562.

R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Ribeiro, J.E.L.S., Hopkins, M.J.G., Vicentini, A., Sothers, C.A., Costa, M.A.S., Brito, J.M., Souza, M.A.D., Martins, L.H.P., Lohmann, L.G., Assuncão, P.P.C.L., Pereira, E.C., Silva, C.F., Mesquita, M.R., & Procópio, L.C. (1999). Flora da Reserva Ducke: Guia de Identificação das Plantas Vasculares de uma Floresta de Terra-firme na Amazônia Central. Instituto Nacional de Pesquisas da Amazônia (INPA) and Department for International Development (DFID), Brasil. 816p

Schmidt, C.A. & Shattuck, S.O. (2014). The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa, 3817: 1–242. doi: 10.11646/zootaxa.3817.1.1.

Schirmel, J., Lenze, S., Katzmann, D. & Buchholz, S. (2010). Capture efficiency of pitfall traps is highly affected by sampling intervals. Entomologia Experimentalis et Applicata, 136: 206–210. doi: 10.1111/j.1570-7458.2010.01020.x.

Silva, R. R. & Brandão, C. R. F. (1999). Formigas (Hymenoptera: Formicidae) como indicadores da qualidade ambiental e da biodiversidade de outros invertebrados terrestres. Biotemas, 12 (2): 55-73

Souza, J.L.P., Moura, C.A.R., Harada, A.Y. & Franklin, E. (2007). Diversidade de espécies dos gêneros de Crematogaster, Gnamptogenys e Pachycondyla (Hymenoptera: Formicidae) e complementaridade dos métodos de coleta durante a estação seca numa estação ecológica no Estado do Pará, Brasil. Acta Amazonica, 37: 649–656.

Souza, J.L.P., Moura, C.A.R. & Franklin, E. (2009). Efficiency in inventories of ants in a forest reserve in Central Amazonia. Revista Agropecuária Brasileira, 44: 940–948.

Souza, J.L.P., Baccaro, F.B., Landeiro, V.L., Franklin, E. & Magnusson, W.E., (2012). Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Applied Soil Ecology, 56: 63–73. doi: 10.1016/j.apsoil.2012.01.004.

Souza, J.L.P., Baccaro, F.B., Landeiro, V.L., Franklin, E., Magnusson, W.E., Pequeno, P.A.C.L. & Fernandes, I.O. (2016). Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity and Distribution, 22: 111–122. doi: 10.1111/ddi.12371.

Tahseen, Q. (2014). Taxonomy-The Crucial yet Misunderstood and Disregarded Tool for Studying Biodiversity. Journal of Biodiversity and Endangered Species, 2(3):128. doi:10.4172/2332-2543.1000128

Vasconcelos, H.L., Macedo, A.C.C. & Vilhena, J.M.S. (2003). Influence of topography on the distribution of ground-dwelling ants in an Amazonian Forest. Studies on Neotropical Fauna and Environment, 38: 115–124.

Wang, C., Strazanac, J. & Butler, L. (2001). A comparison of pitfall traps with bait traps for studying leaf litter ants communities. Journal of Economic Entomology, 94: 761–765.

Zabala, G.A., Gutiérrez, C. & Chacón de Ulloa, P. (2003). Biogeografía provincial: ponerofauna del Valle del Cauca. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 19:593–605.

DOI: http://dx.doi.org/10.13102/sociobiology.v65i2.1207


  • There are currently no refbacks.

JCR Impact Factor 2016: 0.699