Defining Habitat Use by the Parabiotic Ants Camponotus femoratus (Fabricius, 1804) and Crematogaster levior Longino, 2003

Ricardo Eduardo Vicente, Thiago Junqueira Izzo

Abstract


Ant-garden ants have a strong relationship with epiphytes that need light to grow, for these reason, it has been previously documented in forest gaps. Moreover, larger gaps have more available area for nesting and habitats for use as forage. Thus we hypothesize that 1) canopy openness influence the presence of ant´s gardens in gaps, and 2) greater gaps will have more nests, and 3) both openness canopy and area determine the colony size in forest gaps. Furthermore, it is known that parabiotic ants foraging on the ground and in vegetation, the nests are arboreal. So, we also hypothesize that 4) parabiotic ants are more often sampled in arboreal strata and 5) increasing vegetation connectivity and the volume of accumulated litter in the soil increase the foraging of the ants in vegetation and ground, respectively, with the increase in canopy openness increasing the activity of the two species in both strata. Presence, number of Ant-gardens, as colony size, was affected by area and locality, but not by canopy openness. Nevertheless, there was not overall difference in the use of strata by Camponotus femoratus, neither by Crematogaster levior. On the other hand, frequency of C. femoratus on the ground decreases with canopy openness but is not affected by the vegetation connectivity.  Also, C. levior frequency on the ground also decreases with the increase of complexity of vegetation and canopy openness. In addition, neither vegetation connectivity, or canopy openness influence the frequency of foraging of these ants in understory.

Keywords


Canopy openness; Gap size; Habitat Use; Niche partitioning; Vegetation connectivity; Vertical habitat

Full Text:

PDF

References


Almeida, A.F. & Valle, R.R. (2007). Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology, 19(4): 425-448. doi: 10.1590/S1677-04202007000400011

Alvares, C.A., Stape, J.L., Sentelhas, P.C., De-Moraes-Gonçalves, J.L. & Sparovek, G. (2013). Köppen's climate classification map for Brazil. Meteorologische Z. (Berlin), 22: 711-728. doi: 10.1127/0941-2948/2013/0507

Arihafa, A. & Mack, A.L. (2013). Treefall gap dynamics in a tropical rain forest in Papua New Guinea. Pacific Science, 67(1): 47-58. doi: 10.2984/67.1.4

Baudry, O., Charmetant, C., Collet, C. & Ponette, Q. (2014). Estimating light climate in forest with the convex densiometer: operator effect, geometry and relation to diffuse light. European Journal of Forest Research, 133: 101-110. doi:10.1007/q10342-013-0746-6

Bixenmann, R.J., Coley, P.D. & Kursar, T.A. (2011). Is extrafloral nectar production induced by herbivores or ants in a tropical facultative ant–plant mutualism? Oecologia, 165: 417-425. doi: 10.1007/s00442-010-1787-x

Blonder, B., Lamanna, C., Violle, C. & Enquist, B.J. (2014). The n-dimensional hypervolume. Global Ecology and Biogeography, 23: 595–609. doi:10.1111/geb.12146

Brandão, C.R.F., Feitosa, R.M., Schmidt, F.A. & Solar, R.R.C. (2008). Rediscovery of the putatively extinct ant species Simopelta minima (Brandão 1989) (Hymenoptera, Formicidae), with a discussion on rarity and conservation status of ant species. Revista Brasileira de Entomologia, 52:480-483. doi: 10.1590/S0085-56262008000300026

Brenes-Arguedas, T., Roddy, A., Coley, P.D. & Kursar, T.A. (2011). Do differences in understory light contribute to species distributions along a tropical rainfall gradient?. Oecologia, 166, 443-456. doi: 10.1007/s00442-010-1832-9

Camacho, G.P. & Feitosa, R.M. (2016). First record of the Neotropical myrmicine ant genus Kempfidris Fernández, Feitosa & Lattke, 2014 (Hymenoptera: Formicidae) for Peru. Check List, 12(3): 1911. doi: 10.15560/12.3.1911

Costa, F.R.C. & Magnusson, W.E. (2010). The need for large-scale, integrated studies of biodiversity the experience of the Program for Biodiversity Research in Brazilian Amazonia. Natureza & Conservação, 8(1): 3-12. doi: 10.4322/natcon.00801001

Dáttilo, W. (2012). Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Network Biology, 2(4): 127-138. Retrived from: http://www.iaees.org/publications/journals/nb/articles/2012-2(4)/2-Dattilo-Abstract.asp

Dáttilo, W. & Izzo, T.J. (2012). Temperature influence on species co-occurrence patterns in treefall gap and dense forest ant communities in a terra-firme forest of Central Amazon, Brazil. Sociobiology, 59(2): 351-367. doi: 10.13102/sociobiology.v59i2.599

Dáttilo, W., Falcão, J.C.F. & Teixeira, M.C. (2012a). Predictive model of distribution of Atta robusta Borgmeier 1939 (Hymenoptera: Formicidae): subsidies for conservation of a Brazilian leaf-cutting ant endangered species. Studies on Neotropical Fauna and Environment, 48(3): 1-9. doi: 10.1080/01650521.2012.700791

Dáttilo, W., Vicente, R.E., Nunes, R.V. & Feitosa, R.M. (2012b). Influence of cave size and presence of bat guano on ant visitation. Sociobiology, 59(2): 549-560. doi: 10.13102/sociobiology.v59i2.617

Dáttilo, W., Rico-Gray, V., Rodrigues, D.J. & Izzo, T.J. (2013). Soil and vegetation features determine the nested pattern of ant–plant networks in a tropical rainforest. Ecological Entomology, 38: 374–380. doi: 10.1111/een.12029

Davidson, D.W. (1988). Ecological studies of neotropical ant gardens. Ecology, 69: 1138-1152.

Dejean, A., Corbara, B., Orivel, J., Snelling, R.R., Delabie, J.H.C. & Belin-Depoux, M. (2000). The importance of ant gardens in the pioneer vegetal formations of French Guiana. Sociobiology, 35: 425-439.

Delabie, J.H.C, Rocha, W.D., Feitosa, R.M., Devienne, P. & Fresnau, D. (2010). Gnamptogenys concinna (F. Smith, 1858) (Hymenoptera: Formicidae: Ectatomminae): nouvelles données sur sa distribution et commentaires sur ce cas de gigantisme dans le genre Gnamptogenys. Bulletin de la Société Entomologique de France, 115(3): 269-277.

Dicko, A.H., Lancelot, R., Seck, M.T., Guerrini, L., Sall, B., Lo, M., Vreysen, M.J.B., Lefrancois, T., Fonta, W.M., Peck, S.L. & Bouyer, J. (2014). Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal. Proceedings of the National Academy of Sciences, 111(28): 10149. doi: 10.1073/pnas.1407773111

Donner, D.M., Ribic, C.A. & Probst, J.R., (2010). Patch dynamics and the timing of colonization-abandonment events by male Kirtland’s Warblers in an early succession habitat. Biological Conservation, 143: 1159-1167.

Dorado-Rodrigues, T.F., Layme, V.M.G., Silva, F.H.B., Nunes-da-Cunha, C. & Strüssmann, C. (2015). Effects of shrub encroachment on the anuran community in periodically flooded grasslands of the largest Neotropical wetland. Austral Ecology. doi: 10.1111/aec.12222

Feitosa, R.M., Hora, R.R., Delabie, J.H.C., Valenzuela, J. & Fresneau, D. (2008). A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera: Formicidae: Ectatomminae). Zootaxa 1713: 47-52.

Feitosa, R.M., Silva, R.R. & Aguiar, A.P. (2016). Diurnal flight periodicity of a Neotropical ant assemblage (Hymenoptera, Formicidae) in the Atlantic Forest. Revista Brasileira de Entomologia, 60(3):241-247. doi: 10.1016/j.rbe.2016.05.006

Folgarait, P.J. (1998). Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation, 7(9): 1221-1244. doi: 10.1023/A:1008891901953

Gallego-Ropero, M.C., Feitosa, R.M. & Pujol-Luz, J.R. (2013). Formigas (Hymenoptera, Formicidae) associadas a ninhos de Cornitermes cumulans (Kollar) (Isoptera, Termitidae) no Cerrado do Planalto Central do Brasil. EntomoBrasilis, 6(1): 97-101. doi: 10.12741/ebrasilis.v6i1.283

Gallego-Ropero, M.C. & Feitosa, R.M. (2014). Evidences of batesian mimicry and parabiosis in ants of the Brazilian Savanna. Sociobiology, 61: 281-285. doi: 10.1007/s10841-015-9785-2.

Gotelli, N.J., Ellison, A.M. (2011). Princípios de estatística em ecologia. Editora Artmed, Porto Alegre, BR, pp. 352-362.

Guichard, S., Guis, H., Tran, A., Garros, C., Balenghien, T. & Kriticos, D.J. (2014). Worldwide niche and future potential distribution of Culicoides imicola, a major vector of Bluetongue and African Horse Sickness Viruses. PLoS ONE, 9(11): e112491. doi: 10.1371/journal.pone.0112491

Guimarães, P.R., Izzo, T.J., Rico-Gray, V., Oliveira, P.S., Reis, S.F. & Thompson, J.N. (2007). Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Current Biology, 17(20): 1797-1803. doi: 10.1016/j.cub.2007.09.059

Hilbe, J.M. (2007). Negative binomial regression. Cambridge University Press, Cambridge, UK. 570p.

Hutchinson, G.E., 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415-457.

Instituto Brasileiro de Geografia e Estatística. (2004). Mapa da vegetação brasileira. 3ª edição. Ministério do Planejamento, Orçamento e Gestão.

Leite-Rezende, V., Oliveira-Filho, A.T., Eisenlohr, P.V., Kamino, L.Y. & Vibrans, A.C. (2014). Restricted geographic distribution of tree species calls for urgent conservation efforts in the Subtropical Atlantic Forest. Biodiversity and Conservation, 24(5): 1057-1071. doi: 10.1007/s10531-014-0721-7

Leroy, C., Petitclerc, F., Orivel, J., Corbara, B., Carrias, J.-F., Dejean, A. & Céréghino, R. (2016). The influence of light, substrate and seed origin on the germination and establishment of an ant-garden bromeliad. Plant Biology Journal. doi:10.1111/plb.12452

Lindén, A. & Mäntyniemi, S. (2011). Using negative binomial distribution to model overdispersion in ecological count data. Ecology 92:1414–1421.

Longino, J.T. (2003). The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa, 151(1): 1-150. doi: 10.11646/zootaxa.151.1.1

Louda, S.M. & Rodman, J.E. (1996). Insect herbivory as a major factor in the shade distribution of a native crucifer (Cardamine cordifolia A. Gray, Bittercress). Journal of Ecology, 84(2): 229-237.

McCarthy, M.A. & Lindenmayer, D.B. (1999). Incorporating metapopulation dynamics of greater gliders into reserve design in disturbed landscapes. Ecology, 80(2): 651-667.

Medeiros, J.F., Py-Daniel, V. & Izzo, T.J. (2006). The influence of climatic parameters in the haematophagic daily activity of Cerqueirellum argentiscutum (Shelley & Luna Dias) (Diptera: Simuliidae) in Amazonas, Brazil. Acta Amazonica, 36(4):563-568. doi: 10.1590/S0044-59672006000400019

Milstein, A., Zoran, M., Peretz, Y. & Joseph, D. (2000). Low temperature tolerance of pacu, Piaractus mesopotamicus. Environmental Biology of Fishes, 58(4): 455–460. doi: 10.1023/A:1007672401544

Muscolo, A., Bagnato, S., Sidari, M. & Mercurio, R. (2014). A review of the roles of forest canopy gaps. Journal of Forestry Research, 25(4), 725-736. doi: 10.1007/s11676-014-0521-7

Nakano, M.A., Miranda, V.F.O., Souza, D.R., Feitosa, R.M. & Morini, M.S.C. (2013). Occurrence and natural history of Myrmelachista Roger (Formicidae: Formicinae) in the Atlantic Forest of southeastern Brazil. Revista Chilena de Historia Natural, 86: 169-179

Nekaris, K.A.I., Arnell, A.P. & Svensson, M.S. (2015). Selecting a conservation surrogate species for small fragmented habitats using Ecological Niche Modelling. Animals 5(1) :27-40. doi:10.3390/ani5010027

Neves, F.S., Dantas, K.S.Q., Rocha, W.D. & Delabie, J.H.C. (2013). Ants of three adjacent habitats of a transition region between the Cerrado and Caatinga biomes: The effects of heterogeneity and variation in canopy cover. Neotroprical Entomology, 42: 258-268. doi: 10.1007/s13744-013-0123-7

Orivel, J. & Leroy, C. (2011). The diversity and ecology of ant gardens (Hymenoptera: Formicidae, Spermatophyta: Angiospermae). Myrmecological News, 14:73-85.

Pape, R.B. (2016). The importance of ants in cave ecology, with new records and behavioral observations of ants in Arizona caves. International Journal of Speleology, 45: 185-205. doi: 10.5038/1827-806X.45.3.1936

Prado, L.P.; Vicente, R.E.; Silva, T.S.R. & Souza, J.L. (2016). Strumigenys fairchildi Brown, 1961 (Formicidae, Myrmicinae): first record of this rarely collected ants from Brazil. Check List, 12(4): 1922. doi: 10.15560/12.4.1922

R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrived from: http://www.R-project.org/

Radhika, V., Kost, C., Mithöfer, A. & Boland, W. (2010). Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences, 107(40): 17228–17233. doi: 10.1073/pnas.1009007107

Penha, J.M.F. & Mateus, L.A.F. (2007). Sustainable harvest of two large predatory catfish in the Cuiabá river basin, northern Pantanal, Brazil. Brazilian Journal of Biology, 67(1): 81-89. doi: 10.1590/S1519-69842007000100011

Runkle, J.R. (1981). Gap regeneration in some old-growth forests of the eastern United States. Ecology, 62: 1041-1051. doi:10.2307/1937003

Ryder-Wilkie, K.T., Mertl, A.L. & Traniello, J.F.A. (2010). Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS ONE, 5(10): e13146. doi: 10.1371/journal.pone.0013146

Santos-Silva, L., Vicente, R.E. & Feitosa, R.M. (2016). Ant species (Hymenoptera, Formicidae) of forest fragments and urban areas in a Meridional Amazonian landscape. Check List, 12(3):1-7. doi: 10.15560/12.3.1885.

Schmidt, F.A., Feitosa, R.M., Rezende, F.M. & Jesus, R.S. (2014). News on the enigmatic ant genus Anillidris (Hymenoptera: Formicidae: Dolichoderinae: Leptomyrmecini). Myrmecological News, 19:25-30

Schmit-Neuerburg, V. & Blüthgen, N. (2007). Ant gardens protect epiphytes against drought in a Venezuelan lowland rain forest. Ecotropica 13:93-100

Swain, R.B. (1980). Trophic competition among parabiotic ants. Insectes Sociaux, 27(4): 377-390. doi: 10.1007/BF02223730

Sipura, M. & Tahvanainen, J. (2000). Shading enhances the quality of willow leaves to leaf beetles – but does it matter?. Oikos, 91: 550-558. doi: 10.1034/j.1600-0706.2000.910317.x

Vantaux, A., Dejean, A., Dor, A. & Orivel, J. (2007). Parasitism versus mutualism in the ant-garden parabiosis between Camponotus femoratus and Crematogaster levior. Insectes Sociaux, 54:95-99. doi: 10.1007/s00040-007-0914-0

Vasconcelos, H.L. & Vilhena, J.M.S. (2006). Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: A comparison of forests and savannas. Biotropica, 38: 100-106. doi: 10.1111/j.1744-7429.2006.00113.x

Vicente RE, Dáttilo W, Izzo TJ (2014) Differential Recruitment of Camponotus femoratus (Fabricius) Ants in Response to Ant Garden Herbivory. Neotropical Entomology, 43:519-525. doi:10.1007/s13744-014-0245-6

Vicente, R.E., Prado, L.P. & Izzo, T.J. (2016) Amazon Rainforest Ant-Fauna of Parque Estadual do Cristalino: Understory and Ground-Dwelling Ants. Sociobiology 63 (3): 894-908. doi:10.13102/sociobiology.v63i3.1043

Vicente, R.E., Prado, L.P. & Souza, R.C.L. (2015). Expanding the distribution of the remarkable ant Gnamptogenys vriesi Brandão & Lattke (Formicidae: Ectatomminae): first record from Brazil. Sociobiology, 62(4): 615-619. doi: 10.13102/sociobiology.v62i4.920

Wilson, E.O. (1987). The arboreal ant fauna of Peruvian Amazon forests: a first assessment. Biotropica, 19:245-251.

Youngsteadt, E., Nojima, S., Haberlein, C., Schulz, S. & Schal, C. (2008). Seed odor mediates an obligate ant-plant mutualism in Amazonian rainforest. PNAS, 105: 4571-4575. doi: 10.1073/pnas.0708643105

Youngsteadt, E., Alvarez Baca, J., Osborne, J. & Schal, C. (2009). Species-Specific Seed Dispersal in an obligate ant-plant mutualism. PLoS ONE, 4(2): e4335. doi: 10.1371/journal.pone.0004335




DOI: http://dx.doi.org/10.13102/sociobiology.v64i4.1228

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699