Ants (Hymenoptera: Formicidae) and Spiders (Araneae) Co-occurring on the Ground of Vineyards from Douro Demarcated Region

Fátima Gonçalves, Vera Zina, Cristina Carlos, Luís Crespo, Irene Oliveira, Laura Torres

Abstract


This study, held in vineyards from Douro Demarcated Region, aimed to: a) identify the communities and main functional groups of spiders and ants; b) check patterns of co-occurrence between the two communities; and c) evaluate the impact of ground cover and adjacent non-crop habitats in the proximity of vineyards, on the two communities. Samplings were done using pitfall trapping. Twenty species of ants and 44 species of spiders were identified, which included respectively three and nine Iberian endemic species. Aphaenogaster gibbosa (Latreille 1798), Aphaenogaster iberica Emery 1908, Cataglyphis hispanica (Emery 1906), Cataglyphis iberica (Emery 1906), Messor barbarus (L. 1767) and Tapinoma nigerrimum (Nylander 1856) totalized 71.21% of ants. Alopecosa albofasciata (Brullé 1832), Callilepis concolor Simon 1914, Eratigena feminea Simon 1870, Zodarion alacre (Simon 1870) and Zodarion styliferum (Simon 1870) accounted for 38% of spiders. Abundance of both ant-mimicking and ant-eating spiders were positively correlated with Formicinae, while only ant-eating spiders showed positive correlation with Myrmicinae ants. All genera/ species of ant-associated spider were associated with one or more genera/ specie of ants. The abundance of specialist spiders was higher in areas where abundance of ants was also higher. Sheet web weavers spiders were found to be positively correlated with the percentage of ground cover. The present study a) stresses that vineyard agroecosystem support a rich assemblage of ants and spiders evincing that wine production and species conservation is possible and b) the co-occurrence between some species of this two groups is not determined by random patterns.

Keywords


Formicinae; Myrmicinae; Zodarion; co-occurrence; myrmecophagy; myrmecomorphy

Full Text:

PDF

References


Adams, R.J. (2014). Field guide to the spiders of California and the Pacific Coast States. California Natural History Guides. University of California Press Books, 452 p.

Addison, P., Baauw, A.H. & Groenewald, G.A. (2013). An initial investigation of the effects of mulch layers on soil-dwelling arthropod assemblages in vineyards. South African Journal of Enology and Viticulture, 34: 266-271. doi: http://dx.doi.org/10.21548/34-2-1104

Albert, M.J., Escudero, A. & Iriondo, J.M. (2005). Assessing ant seed predation in threatened plants: a case study. Acta Oecologica, 28: 213-220. doi: https://doi.org/10.1016/j.actao.2005.04.005

Acquired Intelligence, Inc., & Pinyon Publishing (2016). ECOSIM: Null modeling software for ecologists. http://www.garyentsminger.com/ecosim/ (accessed date: 2 November, 2016)

Azcárate, F.M., Arqueros, L., Sánchez, A.M. & Peco B. (2005). Seed and fruit selection by harvester ants, Messor barbarus, in Mediterranean grassland and scrubland. Functional Ecology, 19: 273-283. doi: 10.1111/j.0269-8463.2005.00956.x

Balfour, R.A. & Rypstra, A.L. (1998). The influence of habitat structure on spider density in a no-till soybean agroecosystem. The Journal of Arachnology, 26: 221-226.

Beattie, A.J. & Culver, D.C. (1981) The guild of myrmecochores in the herbaceous flora of West Virginia forests. Ecology, 62: 107-115. doi: 10.2307/1936674

Bolduc, E., Buddle, C.M., Bostanian, N.J. & Vicent, C. (2005). Ground-dwelling spider fauna (Araneae) of two vineyards in Southern Quebec. Environmental Entomology, 34, 635-645. doi: https://doi.org/10.1603/0046-225X-34.3.635

Boulay, R., Fedriana, J.M., Manzaneda, A.J. & Cerdá, X. (2005). Indirect effects of alternative food resources in an ant-plant interaction. Oecologia, 144: 72-79. doi: 10.1007/s00442-005-0040-5

Caprio, E., Nervo, B., Isaia, M., Allegro, G. & Rolando, A. (2015). Organic versus conventional systems in viticulture: Comparative effects on spiders and carabids in vineyards and adjacent forests. Agricultural Systems, 136, 61-69. doi: 10.1016/j.agsy.2015.02.009

Cardenas, M., Jiros, P. & Pekar, S. (2012). Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften, 99, 597-605. doi: 10.1007/s00114-012-0938-9

Cardoso, P. & Morano, E. (2010). The Iberian spider checklist (Araneae). Zootaxa, 2495, 1-52.

Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J.A. (2011). Global patterns of guild composition and functional diversity of spiders. PLoS ONE, 6: e21710. doi:10.1371/journal.pone.0021710.

Ceccarelli, F.S. (2008). Behavioral mimicry in Myrmarachne species (Araneae, Salticidae) from North Queensland, Australia. Journal of Arachnology, 36: 344–351. doi: https://doi.org/10.1636/CSt07-114.1

Ceccarelli, F.S. (2013). Ant-mimicking spiders: strategies for living with social insects. Psyche 2013, Article ID 839181, 6 pp. doi: http://dx.doi.org/10.1155/2013/839181

Cerdá, X. & Dejean, A. (2011). Predation by ants on arthropods and other animals. Predation in the Hymenoptera: In Polidori, C. (Ed.), An Evolutionary Perspective (pp 39-78). Transworld Research Network, Kerala, India.

Collingwood, C. & Prince, A. (1998). A guide to ants of Continental Portugal (Hymenoptera: Formicidae). Boletim da Sociedade Portuguesa de Entomologia, 5: 1-49.

Cushing, P.E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. Florida Entomologist, 80: 165-193. doi: 10.2307/3495552

Cushing, P.E. (2012). Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche 2012, Article ID 151989, 23 pp. doi: http://dx.doi.org/10.1155/2012/151989

D’Alberto, C.F., Hoffmann, A.A. & Thomson, L.J. (2012). Limited benefits of non-crop vegetation on spiders in Australian vineyards: regional or crop differences? BioControl, 57: 541-552. doi: https://doi.org/10.1007/s10526-011-9435-x

Dauber, J. & Wolters, V. (2000). Microbial activity and functional diversity in the mounds of three different ant species. Soil Biology and Biochemistry, 32: 93-99. doi: 10.1016/S0038-0717(99)00135-2

Deeleman-Reinhold, C.L. (2001). Forest spiders of South East Asia: with a revision of the sac and ground spiders (Araneae: Clubionidae, Corinnidae, Liocranidae, Gnaphosidae, Prodidomidae and Trochanterriidae [sic]). Brill, Leiden, 591 p.

Dostál, P., Březnová, M., Kozlíčková, V., Herben, T. & Kovář, P. (2005). Ant induced soil modification and its effect on plant below-ground biomass. Pedobiologia, 49: 127-137. doi:10.1016/j.pedobi.2004.09.004

Durkee, C.A., Weiss, M.R. & Uma B.D. (2011). Ant mimicry lessens predation on a North American jumping spider by larger salticid spiders. Environmental Entomology, 40: 1223-1231. doi: 10.1603/EN11057

Folgarait, P.J. (1998). Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation, 7: 1221-1244.

Gaigher, R. & Samways, M.J. (2010). Surface-active arthropods in organic vineyards, integrated vineyards and natural habitat in the Cape Floristic Region. Journal of Insect Conservation, 14: 595-605. doi: https://doi.org/10.1007/s10841-010-9286-2

Gaigher, R. & Samways, M.J. (2014). Landscape mosaic attributes for maintaining ground-living spider diversity in a biodiversity hotspot. Insect Conservation and Diversity, 7 (5): 470-479. doi: 10.1111/icad.12070

Gómez, K. & Espadaler, X. (2007). Hormigas Ibéricas. http://www.hormigas.org (accessed date: 1 September, 2016).

Gotelli, N.J. (2000). Null model analysis of species co-occurrence patterns. Ecology, 81: 2606-2621. doi: 10.2307/177478

Hickman, J.C. (1974). Pollination by ants: a low-energy system. Science, 184: 1290–1292. doi: 10.1126/science.184.4143.1290

Hogg, B.N. & Daane, K.M. (2010). The role of dispersal from natural habitat in determining spider abundance and diversity in California vineyards. Agriculture, Ecosystems and Environment, 135: 260-267. doi:10.1016/j.agee.2009.10.004

Huang, J-N., Cheng, R-C., Li, D. & Tso, I-M. (2011). Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proceedings of the Royal Society B, 278: 1356-1364. doi: 10.1098/rspb.2010.1896

Hunt, J.H. (1983). Foraging and morphology in ants: the role of vertebrate predators as agent of natural selection. In Jaisson, P. (Ed.), Social insects in the tropics (pp 83-104). Université Paris-Nord, Paris.

Jouquet, P., Dauber, J., Lagerlöf, J., Lavelle, P. & Lepage. M. (2006). Soil invertebrates as ecosystem engineers: intended and accidental effects on soil and feedback loops. Applied Soil and Ecology, 32: 153-164. doi: 10.1016/j.apsoil.2005.07.004

Karhu, K.J. (1998). Effects of ant exclusion during outbreaks of a defoliator and a sap-sucker on birch. Ecological Entomology, 23: 185-194. doi: 10.1046/j.1365-2311.1998.00116.x

Korenko, S., Schmidt, S., Schwarz, M., Gibson, G.A.P. & Pekár, S. (2013). Hymenopteran parasitoids of the ant-eating spider Zodarion styliferum (Simon) (Araneae, Zodariidae). ZooKeys, 262: 1-15. doi: 10.3897/zookeys.262.3857

Lázaro-González, A., Arnan, X., Boulay, R., Cerdá, X. & Rodrigo A. (2013). Short-term ecological and behavioural responses of Mediterranean ant species Aphaenogaster gibbosa (Latr. 1798) to wildfire. Insect Conservation and Diversity, 6: 627-638. doi: 10.1111/icad.12018

Lenoir, A., Aron, S., Cerdá, X. & Hefetz, A. (2009). Cataglyphis desert ants: a good model for evolutionary biology in Darwin's anniversary year: a review. Israel Journal of Entomology, 39: 1-32.

Marín, L., Jackson, D. & Perfecto, I. (2015). A positive association between ants and spiders and potential mechanisms driving the pattern. Oikos, 124: 1078-1088. doi: 10.1111/oik.01913

Martínez, M.D., Sanabria, M.I.A., Lozano, E.R. & García, M.D.G. (2002). Los Formicidae (Hymenoptera) de una comunidad sarcosaprófaga en un ecosistema mediterráneo. Anales de Biologia, 24: 33-44.

McIver, J.D. & Stonedahl, G. (1993). Myrmecomorphy: morphological and behavioral mimicry of ants. Annual Review of Entomology, 38, 351–379. doi: https://doi.org/10.1146/annurev.en.38.010193.002031

Nelson, X.J. & Jackson, R.R. (2012). How spiders practice aggressive and Batesian mimicry. Current Zoology, 58: 620-629. doi: https://doi.org/10.1093/czoolo/58.4.620

Nentwig, W., Blick, T., Gloor, D., Hänggi, A. & Kropf, C. (2016). Spiders of Europe. www.araneae.unibe.ch (accessed date: 2 September, 2016)

Oliveira, P.S. (1988). Ant-mimicry in some Brazilian salticids and clubionid spiders (Araneae: Salticidae, Clubionidae). Biological Journal of the Linnean Society, 33: 1-15. doi: https://doi.org/10.1111/j.1095-8312.1988.tb00443.x

Pekár, S. (2004). Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). Journal of Arachnology, 32: 31-41. doi: https://doi.org/10.1636/S02-15

Pekár, S. (2005). Predatory characteristics of ant-eating Zodarion spiders (Araneae: Zodariidae): potential biological control agents. Biological Control, 34: 196-203. doi: 10.1016/j.biocontrol.2005.05.008

Pekár, S. (2009). Capture efficiency of an ant-eating spider, Zodariellum asiaticum (Araneae: Zodariidae), from Kazakhstan. The Journal of Arachnology, 37: 388-391. doi: https://doi.org/10.1636/Hi09-08.1

Pekár, S. & Cárdenas, M. (2015). Innate prey preference overridden by familiarization with detrimental prey in a specialised myrmecophagous predator. The Science of Nature, 102: 8, doi: 10.1007/s00114-015-1257-8.

Pekár, S, Coddington, J.A. & Blackledge, T.A. (2012a). Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution, 66: 776-806. doi:10.1111/j.1558-5646.2011.01471.x

Pekár, S. & Jarab, M. (2011). Life-history constraints in inaccurate Batesian myrmecomorphic spiders (Araneae: Corinnidae, Gnaphosidae). European Journal of Entomology, 108: 255-260. doi: 10.14411/eje.2011.034

Pekár, S., Král, J. & Lubin, Y. (2005). Natural history and karyotype of some ant-eating zodariid spiders (Araneae: Zodariidae) from Israel. Journal of Arachnology, 33: 50-62. doi: https://doi.org/10.1636/S03-2

Pekár, S., Smerda, J., Hrušková, M., Sedo, O., Muster, C., Cardoso, P., Zdráhal, Z., Korenko, S., Bureš, P., Líznarová, E. & Sentenská, L. (2012b). Prey-race drives differentiation of biotypes in ant-eating spiders. Journal of Animal Ecology, 81: 838-848. doi: 10.1111/j.1365-2656.2012.01957.x

Pekár, S. & Toft, S. (2009). Can ant-eating Zodarion spiders (Araneae: Zodariidae) develop on a diet optimal for euryphagous arthropod predators? Physiological Entomology, 34: 195-201. doi: 10.1111/j.1365-3032.2009.00672.x

Perez, J.E.J. & Dupo, A.L.A.B. (2013). Arthropod community structure during the early stages of leaf litter decomposition. Asian Journal of Biodiversity, 4: 84-98. doi: http://dx.doi.org/10.7828/ajob.v4i1.298

Pérez-Bote, J.L. & Romero, A. (2012). Epigeic soil arthropod abundance under different agricultural land uses. Spanish Journal of Agricultural Research, 10: 55-61. doi: http://dx.doi.org/10.5424/sjar/2012101-202-11

Rákóczi, A.M. & Samu, F. (2014). Coexistence patterns between ants and spiders in grassland habitats. Sociobiology, 61: 171-177. doi: 10.13102/sociobiology.v61i2.171-177

Rodriguez, J., Calle, Z. & Montoya-Lerma, J. (2008). Herbivory of Atta cephalotes (Hymenoptera: Myrmicinae) on three plant substrates. Revista Colombiana de Entomologia, 34: 156-162.

Roig, X. & Espadaler, X. (2010). Proposal of functional groups of ants for the Iberian Peninsula and Balearic Islands, and their use as bioindicators. Iberomyrmex, 2: 28-29.

Styrsky, J.D. & Eubanks, M.D. (2007). Ecological consequences of interactions between ants and honeydew-producing insects. Proceedings of the Royal Society B, 274: 151-164.

Thomson, L.J., Neville, P.J, & Hoffmann, A.A. (2004). Effective trapping methods for assessing invertebrates in vineyards. Australian Journal of Experimental Agriculture, 44: 947-953. doi: 10.1071/EA03219

Ward, P.S. (2006). Ants. Current Biology, 16: R152-R154. doi: http://dx.doi.org/10.1016/j.cub.2006.02.054

Wise, D. (1993). Spiders in ecological webs. Cambridge University Press, Cambridge, 328p

Wu, Y., Cai, Q., Lin, C., Chen, Y., Li, Y. & Cheng, X. (2009). Responses of ground-dwelling spiders to four hedgerow species on sloped agricultural fields in Southwest China. Progress in Natural Science, 19: 337-346. doi: https://doi.org/10.1016/j.pnsc.2008.05.032




DOI: http://dx.doi.org/10.13102/sociobiology.v64i4.1934

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699