The Influence of Extrafloral Nectaries on Arboreal Ant Species Richness in Tree Communities

Marcelo Silva Madureira, Tathiana Guerra Sobrinho, José Henrique Schoereder


Studies investigating the role of resource availability in the species richness patterns can elucidate ecological processes and contribute to conservation strategies. In this study, we test two hypotheses: i) arboreal ant species richness increases with abundance of extrafloral nectaries-bearing trees; and ii) arboreal ant species richness increases with the diversity of extrafloral nectaries-bearing trees. We used data of ant sampling and tree inventories from 30 plots of Brazilian Cerrado. Arboreal ant species richness was positively influenced by the proportional abundance of extrafloral nectaries-bearing trees, total tree density and total tree diversity. There was no effect of species richness of extrafloral nectaries-bearing trees. Coefficient of determination of proportional abundance of extrafloral nectaries-bearing trees was larger when compared to coefficient obtained using tree density as explanatory variable. These results suggest that variation in arboreal ant species richness is better explained by extrafloral nectaries-bearing tree abundance than total tree density. Generalist foraging behavior of sampled ant species may explain their association with proportional abundance of extrafloral nectaries-bearing trees and their non-significant relation with proportional richness of extrafloral nectaries-bearing tree species. Extrafloral nectaries-bearing trees abundance may be a specific estimate of the amount of food resource available in plots. Thus, this is a more specific way to quantify which resources may explain variation of the arboreal ant species richness in tree communities. We hope these results will be helpful to understanding the local variation in ant species richness and as criteria to biodiversity conservation.


Resource availability, generalist foraging, Cerrado

Full Text:



Alma, A. M., Pol, R. G., Pacheco, L. F. & Vázquez, D. P. (2015). No Defensive Role of Ants throughout a Broad Latitudinal and Elevational Range of a Cactus. Biotropica, 47: 347-354. doi: 10.1111/btp.12211

Beattie, A.J. (1985). The evolutionary ant-plant mutualisms. Cambridge University Press, Cambridge.

Blüthgen, N. & Fiedler, K. (2004a). Competition for composition: lessons from nectar-feeding ant communities. Ecology, 85: 1479-1485. doi: 10.1890/03-0430

Blüthgen, N. & Fiedler, K. (2004b). Preferences for sugar and amino acids and their conditionality in a diverse nectar ant community. Journal of Animal Ecology, 73: 155-166. doi: 10.1111/j.1365-2656.2004.00789.x

Blüthgen, N., Gottsberger, G. & Fiedler, K. (2004). Sugar and amino acid composition of ant attended nectar and honeydew sources from an Australian rainforest. Austral Ecology, 29: 418-429. doi: 10.1111/j.1442-9993.2004.01380.x

Blüthgen, N., Verhaagh, M., Goitía, W., Jaffé. K., Morawetz, W. & Barthlott, W. (2000). How plants shape the ant community in the Amazonian rainforest canopy: the key role of extrafloral nectaries and homopteran honeydew. Oecologia, 125: 229-40. doi: 10.1007/s004420000449.

Byk, J. & Del-Claro, K. (2011). Ant-plant interaction in the Neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Population Ecology, 53: 327-332. doi: 10.1007/s10144-010-0240-7

Cembrowsky, A.R., Tan, M.G., Thomson, J.D. & Frederickson, M.E. (2014). Ants and ant scent reduce bumblebee pollination of artificial flowers. The American Naturalist, 183: 133-139. doi: 10.1086/674101

Crawley, M.J. (2007). The R book. 1st edition. Chichester: Wiley Publishing, 1076 p.

Dáttilo, W., Izzo, T.J, Vasconcelos, H.L. & Rico-Gray, V. (2013). Strength of the modular pattern in Amazonian symbiotic ant-plant networks. Arthropod-Plant Interactions, 7: 455-461. doi: 10.1007/s11829-013-9256-1

Dáttilo, W., Fagundes, R., Gurka, C.A.Q., Silva M.S.A, Vieira, M.C.L., Izzo, T.J., Diáz-Castelazo, C., Del-Claro, K & Rico-Gray, V. (2014a). Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship. Plos One, 9(6): e99838. doi: 10.1371/journal.pone.0099838

Dáttilo, W., Marquitti, F.M.D., Guimarães, P.R. & Izzo, T.J. (2014b). The structure of ant-plant ecological networks: is abundance enough? Ecology, 95: 475-485. doi 10.1890/12-1647.1

Davidson, D. W., Cook, S. C., Snelling, R. R., & Chua, T. H. (2003). Explaining the abundance of ants in lowland tropical rainforest canopies. Science, 300(5621): 969-972. doi: 10.11 26/science.1082074

Del-Claro K, Rico-Gray V, Torezan-Silingardi H.M, Alves-Silva E, Fagundes R, Lange D, et al. (2016). Loss and gains in ant-plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Sociaux, 63: 207-221. doi: 10.1007/s00040-016-0466-2

Díaz-Castelazo, C., Sanchez-Galván, I.R., Guimaraes, P.R., Raimundo, R.L.G. & Rico-Gray, V. (2013). Long-term temporal variation in the organization of an ant-plant network. Annals of Botany, 111: 1285-1293. doi: 10.1093/aob/mct071

Fagundes, R., Anjos, D.V., Carvalho, R.L. & Del-Claro, K. (2015). Availability of food and nesting-sites as regulatory mechanisms for the recovery of ant diversity after fire disturbance. Sociobiology, 62: 1-9. doi:10.13102/ Sociobiology.v62il.1-9

Falcão, J.C.F., Dáttilo, W. & Izzo, T.J. (2014). Temporal variation in extrafloral néctar secretion in different ontogenic stages of the fruits of Alibertia verrucosa S. Moore (Rubiaceae) in a Neotropical Savanna. Journal of Plant Interactions, 9: 137-142. doi: 10.180/17429145.2013.782513

Ferger, S. W., Schleuning, M., Hemp, A., Howell, K. M., & Böhning‐Gaese, K. (2014). Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecology and Biogeography, 23: 541-549. doi: 10.1111/geb.12151

Fernandes, G.W., Fagundes, M., Greco, M.K.B., Barbeitos, M.C. & Santos, J.C. (2005). Ants and their effects on an insect herbivore community associated with the inflorescences of Byrsonima crassifolia (Linnaeus) H.B.K. (Malpighiaceae). Revista Brasileira de Entomologia, 49: 264-269.

Geneau C.E, Wäckers F.L, Luka H & Balmer O. 2013. Effects of extrafloral and floral nectar of Centaurea cyanus on the parasitoid wasp Microplitis mediator: olfactory attractiveness and parasitization rates. Biological Control, 66: 16-20.

Goitia, W & Jaffé, K. (2009). Ant-plant associations in different forest in Venezuela. Neotropical Entomology, 38: 007-031.

Gonzales-Teuber, M. & Heil, M. (2009). The role of extrafloral amino acids for the preferences of facultative and obligate ant mutualists. Journal of Chemical Ecology, 35: 459-468. doi: 10.1007/s10886-009-9618-4

Heil M (2015) Extrafloral nectar at the plant–insect interface: a spotlight on chemical ecology, phenotypic plasticity, and food webs. Annual Review of Entomology, 60: 213-232. doi: 10.1146/annurevento-010814-020753

Heil, M., Fiala, B., Baumann, B. & Lisenmair, K.E. (2000). Temporal, spacial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Functional Ecology, 14: 749-745.

Hurlbert, A. H., & Stegen, J. C. (2014). When should species richness be energy limited, and how would we know?. Ecology Letters, 17: 401-413. doi: 10.1111/ele.12240

Lange, D. & Del-Claro, K. (2014). Ant-plant interaction in a Tropical Savanna: May the network structure vary over time and influence on the outcome of associations? Plos One, 9(8): e105574. doi:10.1371/journal.pone.0105574.

Lange D., Dáttilo, W. & Del-Claro, K. (2013). Influence of extrafloral nectary phenology on ant-plant mutualistic networks in a neotropical savanna. Ecological Entomology, 38: 463-469. doi: 10.1111/een.12036

Lanza, J., Vargo, E.L., Pulim, S. & Chang, Y.Z. (1993). Preferences of the fire ants Solenopsis invicta and S. geminata (Hymenoptera: Formicidae) for amino acid and sugar components of extrafloral nectars. Environmental Entomology, 22: 411-417.

Le Van, K.E., Hung, K.J., McCann, K.R., Ludka, J.T. & Holway, D.A. (2014). Floral visitation by the Argentine ant reduces pollinator visitation and seed set in the coast barrel cactus, Ferocactus viridescens. Oecologia, 174: 163-171.

Lindsey, P. A., & Skinner, J. D. (2001). Ant composition and activity patterns as determined by pitfall trapping and other methods in three habitats in the semi-arid Karoo. Journal of Arid Environments, 48: 551-568. doi: 10.1006/jare.2000.0764

Mathews, C.R., Bottrell, D.G & Brown, M.W. (2009). Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense. Ecological Applications, 19: 722-730. doi: 10.1890/07-1760.1

Melo, Y., Machado, S.R & Alves, M. (2010). Anatomy of extrafloral nectaries in Fabaceae from dry-seasonal Forest in Brazil. Botanical Journal of Linnean Society, 163: 87-98. doi: 10.1111/j.1095-8339.2010.01047.x

Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54: 17-24. doi: 10.180/00031305.2000.10474502

Mendes, F.N., Rêgo, M.M.C. & Albuquerque, P.M.C. 2011. Phenology and reproductive biology of two species of Byrsonima Rich. Biota Neotropica, 11: 103-115.

Mody, K., & Linsenmair, K. E. (2004). Plant‐attracted ants affect arthropod community structure but not necessarily herbivory. Ecological Entomology, 29: 217-225. doi: 10.1111/j.1365-2311.2004.0588.x

Muniz, D. G., Freitas A.V.L. & Oliveira, P.S. 2012. Phenological relationships of Eunica bechina (Lepidoptera: Nymphalidae) and its host plant, Caryocar brasiliense (Caryocaraceae), in a Neotropical savanna. Studies on Neotropical Fauna and Environment, 47: 111-118.

Nagelkerke, N.J.D. (1991). A note on general definition of the coefficient of determination. Biometrika 78: 691-692. doi: 10.1093/biomet/78.3.691

Nascimento, E.A & Del-Claro, K. (2010). Ant visitation to extrafloral nectaries decreases herbivory and increases fruit set in Chamaecrista debilis (Fabaceae) in a Neotropical savanna. Flora, 205: 754-756.

Oliveira-Filho, A.T & Ratter, J.A. (2002). Vegetation physiognomies and wood flora of the Cerrado biome. In: P.S. Oliveira & R.J. Marquis (Eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna, 367 pp. Columbia University Press, New York p. 91-120.

Oliveira, P.S., Da Silva, A.F. & Martins, A.B. (1987). Ant foraging on extrafloral nectaries of Qualea grandiflora (Vochysiaceae) in Cerrado vegetation: ants as potential anti-herbivore agents. Oecologia, 74: 228-230.

Oliveira, P.S. & Del-Claro, K. (2005). Multitrophic interactions in a Neotropical savanna: ant-hemiptera systems, associated insect herbivores, and a host plant. In: D.F.R.P Burslem, M.A Pinard & S.E. Hartley SE (Eds). Biotic interactions in the tropics, 564 p. Cambridge University Press, Cambridge, pp 414-438.

Oliveira, P.S. & Brandão, C.R.S. (1991). The ant community associated with extrafloral nectaries in the Brazilian Cerrados. In: C. R. Huxley and D. F. Cutler (Eds) Ant-plant interactions. Oxford University Press, 601 pp. Oxford, p. 198-212.

Oliveira, P.S. & Freitas, A.V.L. (2004). Ant-plant-herbivore interactions in the Neotropical Cerrado savanna. Naturwissenschaften, 91: 557-570. doi: 10.1007/s00114-004-0585-x

Pfannenstiel R.S & Patt J.M. 2012. Feeding on nectar and honeydew sugars improves survivorship of two nocturnal cursorial spiders. Biological Control, 63: 231-36.

Rabosky, D. L., & Hurlbert, A. H. (2015). Species richness at continental scales is dominated by ecological limits. The American Naturalist, 185: 572-583. doi: 10.1086/680850.

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

Reñón, L. V. (2008). Sobre paralogismos: ideas para tener en cuenta (About Paralogisms: Some Ideas to Keep in Mind). Crítica: Revista Hispanoamericana de Filosofía, 40(119): 45-65.

Ribas, C.R, Schoereder, J.H., Pic, M. & Soares, S.M. (2003). Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecology, 28: 305-14. doi: 10.1046/j.1442-9993.2003.01290.x

Ribeiro, J.F & Walter, B.M.T. (1998). Fitofisionomia do bioma Cerrado. In: S.M. Sano, S.P. Almeida (Eds). Cerrado: ambiente e flora, 556 pp. Embrapa, Brasília. 1998. pp 89-166.

Rico-Gray, V. & Oliveira, P.S. (2007). The ecology and evolution of ant plant interactions. The University of Chicago Press, Chicago, 331pp.

Rios, R.S., Marquis, R.J. & Flunker, J.C. (2008). Population variation in plant traits associated with ant attraction and herbivory in Chamaecrista fasciculata (Fabaceae). Oecologia, 156: 577-588. doi: 10.1007/s00442-008-1024-z.

Rosumek, F.B., Silveira, F.A.O., Neves, F.S., Barbosa, N.P., Diniz, L., Oki, Y., Pezzini, F., Fernandes, G.W & Cornelissen, T. (2009). Ants on plants: a meta-analysis of the role of ants as plant biotic defenses. Oecologia, 160: 537-549. doi: 10.1007/s00442-009-1309-x

Schoereder, J.H., Sobrinho, T.G., Madureira, M.S., Ribas, C.R & Oliveira, P.S. (2010). The arboreal ant community visiting extrafloral nectaries in the Neotropical Cerrado savanna. Terrestrial Arthropod Reviews, 3: 3-27. doi: 10.1163/1874 98310X487785

Silvério, D.V. & Lenza, E. 2010. Phenology of woody species in a typical cerrado in the Bacaba Municipal Park, Nova Xavantina, Mato Grosso, Brazil. Biota Neotropica, 10: 205–216.

Staab, M., Methorst, J., Peters, J., Blüthgen, N., & Klein, A. M. (2016). Tree diversity and nectar composition affect arthropod visitors on extrafloral nectaries in a diversity experiment. Journal of Plant Ecology, 10: 201-212.

Torezan-Silingardi, H.M., 2007. A influência dos herbívoros florais, dos polinizadores e das características fenológicas sobre a frutificação das espécies da família Malpighiaceae em um cerrado de Minas Gerais. Dr. Sci. Thesis. Universidade de São Paulo, Brasil.

Vilela A.A, Torezan-Silingardi H.M & Del-Claro K (2014) Conditional outcomes in ant-plant-herbivore interactions influenced by sequential flowering. Flora, 209: 359-366. doi: 10.1016/j.flora. 2014.04.004

Wu L, Yun Y, Li J, Chen J, Zhang H &Peng Y. 2011. Preference for feeding on honey solution and its effect on survival, development, and fecundity of Ebrechtella tricuspidata. Entomologia Experimentales et Applicata, 140: 52-58. doi: 10.1111/j.1570-7458.2011.01131.x

Yasuda, M. & Koike, F. (2009). The contribution of the bark of isolated trees as habitat for ants in an urban landscape. Landscape and Urban Planning, 92: 276-281. doi: 10.1016/j.landurbplan.2009.05.008



  • There are currently no refbacks.

JCR Impact Factor 2016: 0.699