The use of tympanic arena as an alternative for behavioral vibroacoustic essays in termites (Blattodea: Isoptera).

Lívia Fonseca Nunes, José Augusto Roxinol, Paulo Fellipe Cristado, Renan Marinho, Og DeSouza

Abstract


In termites, substrate-borne vibrations play an important role in communication among nestmates. The adaptive significance of such an ability has led to an ever-increasing number of studies aimed at improving knowledge on vibroacoustic communication in these insects. Such studies are commonly carried out in laboratory arenas consisting of Petri dishes made of plastic or glass. However, the rigidness of such materials may limit the transmission of vibrational waves impairing accurate records of the feeble vibrations produced by termites. This is one of the reasons why such experiments must be carried out under strictly controlled conditions, using extremely sensitive equipment, usually connected to amplifiers. If, instead, arenas bear a flexible floor (hence simulating a tympanum), vibrations might not be dampened or even easily amplified, thereby overcoming the need for such a specialized setup. Here we test such a hypothesis, using an accelerometer to measure and record vibrations whose intensity was tailored to mimic the feeble vibrations of a small termite species, Constrictotermes cyphergaster. Results support the notion that tympanic arenas portray such vibrations far more accurately than arenas made of plastic or glass. We hence recommend this type of arena as a cheap, albeit accurate, alternative in studies of vibroacoustic behaviors of termites and other insects of comparable size, especially in situations where noise is minimally controlled. These arenas, then, can be useful in conducting such studies just after termite collection in remote regions where well-equipped labs are not available. In doing so, we minimize the stress involved in transporting termites over long distances.

 


Keywords


mechanical communication channel; methods; cheap apparatus;

Full Text:

PDF

References


Cocroft, R., Shugart, H., Konrad, K. & Tibbs, K. (2006). Variation in plant substrates and its consequences for insect vibrational communication. Ethology, 112: 779–789. doi: 10.1111/j.1439-0310.2006.01226.x.

Crawley, M.J. (2005). Contrasts. In M. Crawley (Editor) Statistics: An introduction using R, chap.12, (pp. 209–226). John Wiley & Sons, Ltd. doi: 10.1002/9781119941750.ch12.

Cristaldo, P.F., Jandák, V., Kutalová, K., Rodrigues, V.B., Brothánek, M., Jiříček, O., DeSouza, O. & Šobotník, J. (2015). The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): the integration of chemical and vibroacoustic signals. Biology Open, (pp. bio–014084). doi:10.1242/bio.014084.

Cristaldo, P.F., Rodrigues, V.B., Elliot, S.L., Araújo, A.P. & DeSouza, O. (2016). Heterospecific detection of host alarm cues by an inquiline termite species (Blattodea: Isoptera: Termitidae). Animal Behaviour, 120: 43–49. doi: 10.1016/j.anbehav.2016.07.025.

Errobidart, H.A., Gobara, S.T., Piubelli, S.L. & Errobidart, N.C.G. (2014). Ouvido mecânico: um dispositivo experimental para o estudo da propagação e transmissão de uma onda sonora. Revista Brasileira de Ensino de Física, 36: 1–6. doi: 10.1590/S1806-11172014000100025.

Evans, T.A., Inta, R., Lai, J.C., Prueger, S., Foo, N.W., Fu, E.W. & Lenz, M. (2009). Termites eavesdrop to avoid competitors. Proceedings of the Royal Society of London B: Biological Sciences, 276: 4035–4041. doi: 10.1098/rspb.2009.1147.

Evans, T.A., Lai, J.C., Toledano, E., McDowall, L., Rakotonarivo, S. & Lenz, M. (2005). Termites assess wood size by using vibration signals. Proceedings of the National Academy of Sciences of the United States of America, 102: 3732–3737. doi: 10.1073/pnas.0408649102.

Hager, F.A. & Kirchner, W.H. (2013). Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. Journal of Experimental Biology, 216: 3249–3256. doi: 10.1242/jeb.086991.

Hager, F.A. & Kirchner, W.H. (2014). Directional vibration sensing in the termite Macrotermes natalensis. Journal of Experimental Biology, 217: 2526–2530. doi: 10.1242/jeb.103184.

Howse, P. (1964). The significance of the sound produced by the termite Zootermopsis angusticollis (Hagen). Animal Behaviour, 12: 284–300. doi: 10.1016/0003-3472(64)90015-6.

Howse, P. (1965). On the significance of certain oscillatory movements of termites. Insectes Sociaux, 12: 335–345. doi: 10.1007/BF02222723.

Hunt, J. & Richard, F.J. (2013). Intracolony vibroacoustic communication in social insects. Insectes Sociaux, 60: 403–417. doi: 10.1007/s00040-013-0311-9.

Joyce, A.L., Hunt, R.E., Bernal, J.S. & Bradleigh Vinson, S. (2008). Substrate influences mating success and transmission of courtship vibrations for the parasitoid Cotesia marginiventris. Entomologia Experimentalis et Applicata, 127: 39–47. doi: 10.1111/j.1570-7458.2008.00670.x.

Mark, L. & Rufus, J. (2013). Animal signals. Current Biology, 23: R829–R833. doi: 10.1016/j.cub.2013.07.070.

Mathews, A. (1977). Studies on termites from the Mato Grosso state, Brazil. Academia Brasileira de Ciências. URL https://books.google.com.br/books?id=hTEgAQAAMAAJ.

Michelsen, A., Fink, F., Gogala, M. & Traue, D. (1982). Plants as transmission channels for insect vibrational songs. Behavioral Ecology and Sociobiology, 11: 269–281. URL http://www.jstor.org/stable/4599546.

Miklas, N., Stritih, N., Cokl, A., Virant-Doberlet, M. & Renou, M. (2001). The influence of substrate on male responsiveness to the female calling song in Nezara viridula. Journal of Insect Behaviour, 14: 313–332. doi: 10.1023/a:1011115111592.

Oberst, S., Bann, G., Lai, J. & Evans, T.A. (2017). Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecology Letters, 20: 212–221. doi: 10.1111/ele.12727.

Šobotník, J., Jirošová, A. & Hanus, R. (2010). Chemical warfare in termites. Journal of Insect Physiology, 56: 1012–1021. doi: 10.1016/j.jinsphys.2010.02.012.

Sosa, M., Carneiro, A., Baffa, O. & Colafemina, J. (2002). Human ear tympanum oscillation recorded using a magnetoresistive sensor. Review of Scientific Instruments, 73: 3695–3697. doi: 10.1063/1.1502444.

Stuart, A. (1963). Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiological Zoology, 36: 85–96. doi: 10.1086/physzool.36.1.30152740.




DOI: http://dx.doi.org/10.13102/sociobiology.v65i1.2090

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699