New Records and Potential Distribution of the ant Gracilidris pombero Wild & Cuezzo (Hymenoptera: Formicidae)

Elmo Borges Azevedo Koch, João Paulo Sales Oliveira Correia, Rodolpho ST Menezes, Rafaella A Silvestrini, Jacques Hubert Charles Delabie, Heraldo L Vasconcelos

Abstract


Gracilidris pombero Wild & Cuezzo, 2006 is an ant that remains poorly studied. Endemic from South America, its geographical distribution is known from few and scattered collection points. In this study, we present new occurrence records of G. pombero obtained through extensive collections along the Cerrado biome and the Atlantic Forest of northeastern Brazil. Based on the new and existing occurrence records we produced a model of the geographic distribution of G. pombero. Modelling method was chosen based on maximization of model performance after evaluating a series of modelling approaches, including different parametrizations of the Maxent algorithm and distinct runs of the GARP algorithm. We found a total of 43 new records of G. pombero in Brazil, including the first records of this species in the states of Goiás, Mato Grosso do Sul, Piauí, Sergipe and Tocantins. Based on our model, the areas of highest suitability of occurrence of G. pombero are located in two main zones in South America: one ranging from midwestern Brazil to southeastern Bolivia and Paraguay; and the other spanning the South of Brazil and Uruguay.


Keywords


Biogeography, Dolichoderinae, GARP, Maxent, Neotropical Region.

Full Text:

PDF

References


Ab’Saber, A.N. (Eds.). 2003. Os domínios da natureza no Brasil: potencialidades paisagísticas. São Paulo, Ateliê Editorial, 160 p.

Anderson, R.P., Lew, D. & Peterson, A.T. (2003). Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecological Modelling, 162: 211-232.

Brandão, C.R.F., Silva, R.R. & Feitosa, R.M. (2011). Cerrado ground-dwelling ants (Hymenoptera: Formicidae) as indicators of edge effects. Zoologia, 28: 379-387. doi.org/10.1590/S1984-46702011000300012

Bestelmeyer, B.T., Agosti, D., Alonso, L.E., Brandão, C.R.F., Brown Jr, W.L., Delabie, J.H.C. & Silvestre, R. (2000). Field techniques for the study of ground-living ants: an overview, description, and evaluation. In Agosti, D., Majer, J.D., Alonso, L.E. & Schultz, T.R. (Eds.), Ants: Standart Methods for Measuring and Monitoring Biodiversity (pp. 122-144). Smithsonian Institution, Washington, USA, 280p.

Boria, R.A., Olson, L.E., Goodman, S. M. & Anderson, R.P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models, Ecol. Model., 275: 73-77. doi.org/10.1016/j.ecolmodel.2013.12.012

Camacho G.P. & Vasconcelos, H.L. (2015). Ants of the Panga Ecological Station, a Cerrado Reserve in Central Brazil. Sociobiology, 62: 281-295. doi.org/10.13102/sociobiology.v62i2.281-2957

Costa-Milanez, C.B., Lourenço-Silva, G., Castro, P.T.A., Majer, J.D. & Ribeiro, S.P. (2014). Are ant assemblages of Brazilian veredas characterised by location or habitat type? Brazilian Journal of Biology, 74: 89-99. doi.org/10.1590/1519-6984.17612

Feitosa, R.M., Drose, W., Podgaiski, L.R. & Medonça Jr., M.S. (2015). First Record of the Dolichoderine Ant Genus Gracilidris Wild & Cuezzo (Hymenoptera: Formicidae) from Southern Brazil. Sociobiology, 62: 296-299. doi.org/10.13102/sociobiology.v62i2.296-299

Fernandéz, F. & Guerrero, R.J. 2008. Technomyrmex (Formicidae: Dolichoderinae) in the New World: synopsis and description of a new species. Revista Colombiana de Entomología, 34: 110-115.

Guerrero, R.J. & Sanabria, C. (2011). The first record of the genus Gracilidris (Hymenoptera: Formicidae: Dolichoderinae) from Colombia. Revista Colombiana de Entomología, 37(1): 159-161.

Guénard, B., Weiser, M.D. & Dunn, R.R. (2012). Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. PNAS, 109(19): 7368-7373. doi.org/10.1073/pnas.1113867109

Hammer, Z., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4:1-9.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25: 1965-1978. doi.org/10.1002/joc.127

Hijmans, R.J. & Graham, C.H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12: 2272-2281. doi: 10.1111/j.1365-2486.2006.01256.x

Joly C., Metzger J.P. & Tabarelli M. (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New. Phytol., 204: 459-473. doi.org/10.1111/nph.12989

Kramer-Schadt, S., et al. (2013), The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib., 19: 1366-1379. doi.org/ 10.1111/ddi.12096

Leal, I.R. (2003). Diversidade de formigas em diferentes unidades de paisagem da Caatinga. In: Leal, I. R., Tabarelli, M. & Silva J.M.C. (eds). Ecologia e conservação da Caatinga, v.1. Recife: Editora Universitária UFPE, p. 435-461.

Menezes, R.S.T., Brady, S.G., Carvalho, A.F., Del Lama, M.A. & Costa, M.A. (2017). The roles of barriers, refugia, and chromosomal clines underlying diversification in Atlantic Forest social wasps. Scientific Reports, 7: 7689. doi.org/10.1038/s41598-017-07776-7

Meurer, E., Battirola, L.D., Delabie, J.C.H. & Marques, M.I. (2015). Influence of the vegetation mosaic on ant (Formicidae: Hymenoptera) distributions in the Northern Brazilian Pantanal. Sociobiology, 62: 382-388. doi.org/10.13102/sociobiology.v62i3.359

Muñoz, M.E.S., Giovanni, R., Siqueira, M.F., Sutton, T., Brewer, P., Pereira, R.S, Canhos, D.A.L. & Canhos, V.P. (2009) openModeller: a generic approach to species’ potencial distribution modeling. GeoInformatica, 1-25.

Neves, F.S., Queiroz-Dantas, K.S., Rocha, W.D. & Delabie, J.H.C. (2013). Ants of three adjacent habitats of a transition region between the cerrado and caatinga biomes: the effects of heterogeneity and variation in canopy cover. Neotropical Entomology, 42: 258-26. doi.org/10.1007/s13744-013-0123-7

Peterson, A.T., Soberón, J. & Sánchez-Cordero, V. (1999). Conservatism of ecological niches in evolutionary time. Science, 285: 1265-1267.

Phillips, S.J. & Dudik, M. (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31: 161-175. doi: 10.1111/j.0906-7590.2008.5203.

Qin, Z., Zhang, J., DiTommaso, A., Wang, Rui-long. & Wu, Rui-shan. (2015). Predicting invasions of Wedelia trilobata (L.) Hitchc. with Maxent and GARP models Journal of Plant Research, 128: 763-775. doi: 10.1007/s10265-015-0738-3

Raimundo, R.L.G., Fonseca, R.L., Schachetti-Pereira, R.,

Peterson, A.T. & Lewinsohn, T.M. (2007). Native and exotic

distributions of siamweed (Chromolaena odorata) modeled

using the genetic algorithm for rule-set production. Weed

Science, 55: 41-48. doi: 10.1614/WS-06-083.1

Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J. & Hirota, M.M. (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 42: 1141-1153. doi.org/ jl10.1016/jbiocon2009.02021

Ribeiro, M.C., Martensen, A.C., Metzger, J.P., Tabarelli, M., Scarano, F.R. & Fortin, M.J. (2011). The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos, F.E. & Habel, J.C. (eds) Biodiversity hotspots. Springer, Heidelberg, p. 405-434. doi.org/10.1590/S1519-69842010000400002

Santos, R.J., Koch, E.B.A., Leite, C.M.P., Porto, T.J. & Delabie, J.H.C. (2017). An assessment of leaf-litter and epigaeic ants (Hymenoptera: Formicidae) living in different landscapes of the Atlantic Forest Biome in the State of Bahia, Brazil. Journal of Insect Biodiversity 5: 1-19.

Silva, E.M. & Delabie, J.H.C. (2014). Formicidae (Hymenoptera) do Semiárido. pp. 203-213. In: Bravo F. & Calor A. (org). Artrópodes do Semiárido, Biodiversidade e Conservação. Feira de Santana: Printmídia. 298 pp. ISBN: 978-85-62465-16-1.

Solar, R., Chaul, J.C.M., Maues, M.M. & Schoereder, J.H. (2016). A Quantitative Baseline of Ants and Orchid Bees in Human-Modified Amazonian Landscapes in Paragominas, PA, Brazil. Socioiology, 63: 925-940. doi.org/ 10.13102/sociobiology.v63i3.1052

SOS Mata Atlântica/INPE-Instituto Nacional de Pesquisas Espaciais (2017). Atlas dos remanescentes florestais da Mata Atlântica – Período 2015-2016. https://www.sosma.org.br/projeto/atlas-da-mata-atlantica/dados-mais-recentes/

Ulysséa, M. A. & Brandão, C. R. (2013). Ant species (Hymenoptera, Formicidae) from the seasonally dry tropical forest of northeastern Brazilː a compilation from field surveys in Bahia and literature records. Revista Brasileira de Entomologia, 57ː 217-224. doi: 10.1590/S0085-56262013005000002

Vasconcelos, H.L., Maravalhas, J.B., Feitosa, R.M., Pacheco, R., Neves, K.C., Andersen, A.N. (2017) Neotropical savanna ants show a reversed latitudinal gradient of species richness, with climatic drivers reflecting the forest origin of the fauna. Journal of Biogeography, 00: 1-11. doi.org/10.1111/jbi.13113.

Wild, A. & Cuezzo, F. (2006). Rediscovery of a fossil dolichoderine ant lineage (Hymenoptera: Formicidae: Dolichoderinae) and a description of a new genus from South America. Zootaxa, 1142: 57-68. doi.org/10.13102/sociobiology.v62i2.296-299

Wilson, E. O. (1985). Ants of the Dominican amber 3. The subfamily Dolichoderine. Psyche, 92: 17-37. doi: 10.1155/1985/20969.

Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C.H. & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Divers. Distrib., 14: 763-773. doi.org/ 10.1111/j.1472-4642.2008.00482.x

Young C.E.F (2003) Socioeconomic causes of deforestation in the Atlantic forest of Brazil. In: Galindo-Leal, C. & Câmara, I.G (eds) The Atlantic forest of South America: biodiversity status, threat and outlook. Island Press, Conservation International, Washington, p. 103–117.




DOI: http://dx.doi.org/10.13102/sociobiology.v65i3.2744

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699