Genetic Variation in Iranian Honey bees, Apis mellifera meda Skorikow, 1829, (Hymenoptera: Apidae) Inferred from PCR-RFLP Analysis of two mtDNA Gene Segments (COI and 16S rDNA)

Ataollah Rahimi, Alinaghi Mirmoayedi, Danial Kahrizi, Leila Zarei, Samad Jamali


In this study, the genetic structure of Iranian honey bee (Apis mellifera meda) populations, mainly obtained from all of regions, were investigated at two different mitochondrial regions. A total of 300 worker bees were collected from 20 different populations in 20 different locations. Portions of the mitochondrial 16S ribosomal RNA (16S rDNA) and cytochrome C oxidase I (COI) genes were amplified by PCR and then subjected to RFLP pattern analysis using 8 restriction enzymes. Nucleotide polymorphisms were revealed using restriction enzyme Sau3A I, Ssp I and Taq I in COI and Bsp143I, Ssp I and Dra I in the 16S rDNA gene segment. In this study, 3 novel composite genotypes (haplotypes) were found in Iranian honey bee populations. The average haplotype diversity (h) within populations was 0.0405. Heterozygosity values, Shannon index and the number of alleles of Iranian honey bee populations were low that could be caused by low definite geographic structure of Iranian honey bee populations. Genetic distance (D) values were found to be low (0.0–0.0011) within Iranian honey bee populations. Cluster analysis based on UPGMA method revealed that all populations and samples groups be in one cluster. Also, the phylogenetic tree based on Neighbor-joining method divided 29 subspecies of honey bee to 5 distinct clusters. The Iranian subspecies honey bee composed of a shared clade with subspecies of Eastern Mediterranean, Near East and Eastern parts of Middle East (O branch). This result is very useful for the control of conservation of local honey bees, as the movement of colonies across the border line of these neighboring countries, may affect the genetic structure of honey bee populations.



Apis mellifera; Genetic structure, mtDNA, Iran.

Full Text:



Aljianabi, S.M. & Martinez, I. (1997). Universal and rapid salt extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research, 25: 4692 – 4693.

Arias, M.C. & Sheppard, W.S. (1996). Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Molecular Phylogenetics and Evolution, 5: 557 – 566. doi: 10.1006/mpev.1996.0050.

Arias, M. & Sheppard, W. (2005). Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 37: 25–35. doi:10.1016/j.ympev.2005.02.017.

Badino, G., Celebrano, G., Manino, A. & Ifantidis, M. D. (1988). Allozyme variability in Greek honeybees (Apis mellifera L.). Apidologie, 19(4):377–386.

Bouga, M., Harizanis, P.C., Kilias, G. & Alahiotis, S. (2005). Genetic divergence and phylogenetic relationships of honeybee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR-RFLP analysis of three mtDNA segments. Apidologie, 36: 335-344. doi: 10.1051/apido:2005021.

Cornuet, J. M. & Garnery, L. (1991). Genetic Diversity in Apis mellifera. In: Smith, DR. Ed. Diversity in the genus Apis, Westview Press, Boulder, Co.

De La Rúa, P., Simon, U.E., Tide, A.C., Moritz, R.F.A. & Fuchs, S. (2000). MtDNA variation in Apis cerana populations from the Philippines. Heredity, 84, 124–130.

Estoup, A., Solignac, M., Harry, M. & Cornuet, J.M. (1993). Characterization of (GT)n and (CT)n microsatellites in two insect species: Apis mellifera and Bombus terrestris. Nucleic Acids Research, 21: 1427 – 1431.

Garnery, L., Cornuet, J.M. & Solignac, M. (1992). Evolutionary history of the honeybee (Apis mellifera L.) inferred from mitochondrial DNA analysis. Molecular Ecology, 3: 145-154.

Garnery, L., Solignac, M., Celebrano, G. & Cornuet, J.M. (1993). A simple test using restricted PCR-amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia, 49: 1016 – 1021.

Garnery, L., Franck, P., Baudry, E., Vautrin, D. & Cornuet, J.M. (1998). Genetic biodiversity of the West european honey bee (Apis mellifera and A.m. iberica) I: Mitochondrial DNA. Genet Selection Evolution, 30: S31 – S47.

Francýsco, F. O., Silvestre, D. & Arias, M. C. (2001).Mitochonrial DNA characterization of five species of Plebeia (Apidae: Meliponini): RFLP and resitriction maps. Apidologie, 32: 323-332.

Franck, P., Garnery, L., Solignac, M. & Cornuet, J. M. ( 2000). Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie, 31: 167-180.

Hall, H.G. (1990): Parental analysis of introgressive hybridization between African and European honeybees using nuclear DNARFLPs. Genetics, 125: 611–621.

Hunt, J.G. & Page Jr, E.R. (1992). Patterns of inheritance with RAPD molecular markers reveal novel types of polymorphism in the honey bee. Theoretical and Applied Genetics, 85: 15–20.

Kandemir, I., Kence, M., Sheppard, W. S. & Kence, A. (2006). Mitochondrial DNA variation in honeybee (Apis mellifera L.) population from Turkey. Journal of Apicultural Research, 45 (1): 33-38. doi: 10.3896/IBRA.

Kamrani, B., Pirany, N., Hashemi, A. & Kamrani, M. (2012). Genetic Characterization of Honey bees (Hymenoptera: Apidea) Populations from North West of Iran Using RAPD Markers. Technical Journal of Engineering and Applied Sciences, 2: 430-435.

Kekecoglu, M., Bouga, M., Soysal, M.I. & Harizanis, P. (2009). Genetic divergence and phylogenetic relationships of honey bee populations from Turkey using PCR-RFLP’s analysis of two mtDNA segments. Bulgarian Journal of Agricultural Science, 15: 589-597.

Meixner, M.D., Leta, M.A., Koeniger, N., Fuchs, S. (2011). The honey bees of Ethiopia represent a new subspecies of Apis mellifera – Apis mellifera simensis ssp. Apidologie, 42: 425-437. doi: 10.1007/s13592-011-0007-y.

Meusel, M. S & Moritz, R. F. A. (1993). Transfer of paternal mitochondrial DNA in fertilization of honeybees (Apis mellifera L.) eggs. Current Genetic, 24 (6): 539-543.

Moradi, M. & Kandemir, A. (2004). Morphometric and Allozyme Variability in Persian Bee Population from the Alburz Mountains, Iran. Iranian Journal of Science and Technology, 5: 151-166.

Moritz, R.F.A., Hawkins, C.F., Crozier, R.H. & McKinley, A.G. (1986). A mitochondrial DNA polymorphism in honey bees (Apis mellifera L.). Experientia, 42: 322-324.

Mcelroy, D., Moran, P., Bermingham, E. & Kornfield, I. (1991). Reap: The Restriction Enzyme Analysis Package, Version 4.0. University Of Maine, Orono.

Nash, J.H.E. (199). DNAfrag, program version 3.03, Institute for Biological Sciences National Research Council of Canada, Ottawa, Ontario, Canada.

Nei, M. & Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases. Genetics, 97: 145-163.

Nei, M. & Miller, J. C. (1990). A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. Genetics, 125: 873-879.

Nunamaker, R. A., Wilson, W. T. & Haley, B. E. (1984). Electrophoretic detection of Africanized honey bee (Apis mellifera scutellata) in Guatemala and Mexico based on malate dehydrogenase allozyme patterns. Journal of the Kansas Entomological Society, 57:622–631.

Ozdil, F., Aytekin, I., Ilhan, F. & Boztepe, S. (2012). Genetic variation in Turkish honeybees Apis mellifera anatoliaca, A. m. caucasica, A. m. meda (Hymenoptera: Apidae) inferred from RFLP analysis of three mtDNA regions (16S rDNACOI-ND5). European Journal of Entomology, 109: 161–167.

Oldroyd, B.P., Cornuet, J.M., Rowe, D., Rinderer, E.T. & Crozier, R.H. (1995). Racial admixture of Apis mellifera in Tasmania, Australia: similarities and differences with natural hybrid zones in Europe. Heredity, 74: 315–325.

Palmer, M. N., Smith, D. R. & Kaftanoglu, O. (2000). Turkish Honeybees: Genetic variation and evidence for a fourth lineage of Apis mellifera mtDNA. Journal of Heredity, 91: 42-46.

Pedersen, B.V. (1996). On the phylogenetic position of the Danish strain of the black honeybee (the Laeso bee), Apis mellifera mellifera L. (Hymenoptera: Apidae) inferred from mitochondrial DNA sequences. Entomologica. Scandinavica, 27: 241–250.

Pinto, M. A., Johnston, J. S., Rubink, W. L., Coulson, R. N., Patton, J. C. & Sheppard, W. S. (2003). Identification of Africanized honey bee (Hymenoptera: Aphidae) mitochondrial DNA: Validation of a Rapid Polymerase Chain Reaction- Based Assay. Annals of the Entomological Society of America, 96 (5): 679-684.

Rahimi, A. & Asadi, M. (2010). Morphological characteristics of Apis mellifera meda (Hymenoptera: Apidae) in Saghez (west of Iran). Nature Montenegro, 10: 101-107.

Rahimi, A. & Mirmoayedi, A. (2013). Evaluation of morphlogical characteristics of honey bee Apis melífera meda (Hymenoptera: Apidae) in Mazandaran (North of Iran). Technical Journal of Engineering and Applied Sciences, 3: 1280-1284.

Rahimi, A., Asadi, M., Abdolshahi, R. (2014a) A. Genetic diversity of honey bee (Apis mellifera meda) populations using microsatellite markers in Jiroft. Journal of Science and Tactic of Honey Bee, 6: 26-33.

Rahimi, A., Miromayedi, A., Kahrizi, D., Abdolshahi, R., Kazemi, E., Yari KH. (2014b) B. Microsatellite genetic diversity of Apis mellifera meda skorikov. Molecular Biology Reports, 41: 7755–7761. doi: 10.1007/s11033-014-3667-7.

Rahimi, A., Hasheminasab, H., Azati, N. (2015a). Predicting honey production based on morphological characteristics of honey bee (Apis mellifera L.) using multiple regression model. Ecology-Environment-Conservation, 21: 29-33.

Rahimi, A (2015b). Study of the genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations using the mtDNA COI–COII intergenic region. Biologija, 61(2): 54-59.

Rahimi, A., Mirmoayedi, A., Kahrizi, D., zaraei, L. & Jamali, S. (2016). Genetic diversity of Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations based on ISSR markers. Cellular and Molecular Biology, 62 (4): 53-58.

Rahimi, A., Mirmoayedi, A., Kahrizi, D., zaraei, L. & Jamali, S. (2017). Morphometric diversity and phylogenetic relationships among Iranian honey bee (Apis mellifera meda Skorikow, 1829) populations using morphological characters. Sociobiology, 64(1): 33-41. doi: 10.13102/sociobiology.v64i1.1179.

Royan, M., Rahimi, G., Esmaeilkhanian, S. & Ansari, Z. (2007). A study on the genetic diversity of the Apis mellifera meda population in the south coast of the Caspian Sea using microsatellite markers. Journal of Apicultural Research and Bee World, 46(4): 236-241. doi: 10.3896/IBRA.

Ruttner, F. (1988). Biogeography and Taxonomy of Honeybees, Springer-Verlag, Berlin, 284 p.

Ruttner, F. (1992). Naturgeschichte der Honigbienen. Ehrenwirth Verlag. M¸nich. Germany. 357pp.

Sheppard, W.S., Arias, M.C., Grech, A. & Meixner, M.D. (1997). Apis mellifera ruttneri, a new honey bee subspecies from Malta. Apidologie, 28: 287-293.

Sheppard, W.S. & Meixner, M.D. (2003). Apis melífera pomonella, a new honey bee subspecies from Central Asia. Apidologie, 34: 367-375. doi: 10.1051/apido:2003037

Smith, D. R. (1991). Mitochondrial DNA and honey beebiogeography. In: Smith, DR. (ed) Diversity in the genus Apis. Boulder, CO Westview, pp. 131-176.

Smith, D.R., Taylor, O.R. & Brown, W.M. (1989). Neotropical Africanized honeybees have African mitochondrial DNA. Nature, 339: 213-215.

Tarès, S., Cornuet, J.M. & Abad P. (1993). Characterization of an Unusually Conserved Alu I Highly Reiterated DNA Sequence Family From the Honeybee Apis mellifera. Genetics, 134: 1195-1204.



  • There are currently no refbacks.

JCR Impact Factor 2016: 0.699