Diversity of Flower Visiting Insects in Dry Grasslands and Vineyards Close to the City of Vienna with Special Focus on Wild Bees.

Leonid Rasran, Alexander Diener, Baerbel Pachinger, Karl-Georg Bernhardt

Abstract


Interactions between flower visiting insects and nectar resp. pollen producing plants belong to the most relevant in terrestrial ecosystems. Their diversity and dominance relationship are important indicators for the stability and functionality of ecosystems and belong to the high ranking ecosystem services. Potential pollinators should be strongly concerned especially regarding anthropogenic impacts on habitats. We studied the diversity and quantities of flower visiting insects with special focus on wild bees (Apiformes) in two locations near the city of Vienna (Austria). Insect sampling occurred in May until July 2015 every two weeks parallel to the vegetation surveys incl. records of the cover of flowering plants. In each location patches of semi-natural grassland as well as flowering strips within vineyards were investigated. We found a significant correlation between the number of insects or insect taxa (especially for Hymenoptera) and the current flower cover. In some cases flowering strips in vineyards harbor higher numbers of insects and higher diversity of bee species than the semi-natural grassland due to temporarily higher values of flower cover. However, grassland patches provide a much more constant supply with nectar producing plants replacing each other in their flowering phase during the season. In contrast, flowering strips are often dominated by one or a few short-lived sown plants, which is of advantage for some oligolectic bees specialized on Brassicaceae or Fabaceae. Flowering strips within organically farmed vineyards are more similar to semi-natural grassland regarding the diversity of flower visiting insects than to conventional farmed vineyards.

Keywords


Organic farming, flower cover, flower strips

Full Text:

PDF

References


Adler, W. & Mrkvicka, A.Ch. (2003). Die Flora Wiens gestern und heute. Wien: Verlag des NHM, 831 p.

Aviron, S., Herzog, F., Klaus, I., Schüpbach, B. & Jeanneret, P. (2011). Effects of wildflower strip quality, quantity, and connectivity on butterfly diversity in a Swiss arable landscape. Restoration Ecology 19: 500-508. doi: 10.1111/j.1526-100X.2010.00649.x

Biesmeijer, J.C., Roberts, S.P., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Kunin, W.E. & Settele, J. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313: 351-354. doi: 10.1126/science.1127863

Bruggisser, O.T., Schmidt-Entling, M.H. & Bacher, S. (2010). Effects of vineyard management on biodiversity at three trophic levels. Biological Conservation 143: 1521-1528. doi: 10.1016/j.biocon.2010.03.034

Burkle, L.A., Marlin, J.C. & Knight, T.M. (2013). Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339: 1611-1615. doi: 10.1126/science.1232728

Calvo, R.N. & Horvitz, C.C. (1990). Pollinator limitation, cost of reproduction, and fitness in plants: a transition-matrix demographic approach. American Naturalist 136: 499-516. doi: 10.1086/285110

Campbell, A.J., Wilby, A., Sutton, P. & Wäckers, F.L. (2017). Do sown flower strips boost wild pollinator abundance and pollination services in a spring-flowering crop? A case study from UK cider apple orchards. Agriculture, Ecosystems & Environment 239: 20-29. doi: 10.1016/j.agee.2017.01.005

Fischer, M.A., Oswald, K. & Adler, W. (2008). Exkursionsflora für Österreich, Lichtenstein und Südtirol, 3. Aufl. Biologiezentrum der Oberösterreichischen Landesmuseen, Linz, 1392 p.

Fontaine, C., Dajoz, I., Meriguet, J. & Loreau, M. (2006). Functional Diversity of Plant–Pollinator Interaction Webs Enhances the Persistence of Plant Communities. PLoS Biology 4: 129-135. doi: 10.1371/journal.pbio.0040001

Garibaldi, L.A., Steffan-Dewenter, I., Kremen, C., Morales, J.M., Bommarco, R., Cunningham, S.A., Carvalheiro, L.G., Chacoff, N.P., Dudenhöffer J.H., Greenleaf, S., Holzschuh, A., Isaacs, R., Krewenka, K., Mandelik, Y., Mayfield, M.M., Morandin, L.A., Potts, S.G., Ricketts, T.H., Szentgyörgyi, H., Viana, B.F., Westphal, C., Winfree, R. & Klein, A.M. (2011). Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters 14: 1062–1072. doi: 10.1111/j.1461-0248.2011.01669.x

Gusenleitner, F., Schwarz, M., Mazzucco, K. (2012). Apidae (Insecta: Hymentoptera). In: Schuster, R. (ed.) Biosystematics and Ecology Series No. 29: Checkliste der Fauna Österreichs, No. 6 ÖAW-Verlag der Österreichischen Akademie der Wissenschaften, Vienna_ 1-129.

Haaland, C., Naisbit, R.E. & Bersier, L. F. (2011). Sown wildflower strips for insect conservation: a review. Insect Conservation and Diversity 4: 60-80. doi: 10.1111/j.1752-4598.2010.00098.x

Holland, J.M., Smith, B.M., Storkey, J., Lutman, P. J. & Aebischer, N.J. (2015). Managing habitats on English farmland for insect pollinator conservation. Biological Conservation 182: 215-222. doi: 10.1016/j.biocon.2014.12.009

Holzschuh, A., Steffan-Dewenter, I., Kleijn, D. & Tscharntke, T. (2007). Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. Journal of Applied Ecology 44: 41-49. doi: 10.1111/j.1365-2664.2006.01259.x

Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. (2010). How do landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids? Journal of Animal Ecology 79: 491-500. doi: 10.1111/j.1365-2656.2009.01642.x

Jennersten, O. & Nilsson, S.G. (1993). Insect flower visitation frequency and seed production in relation to patch size of Viscaria vulgaris (Caryophyllaceae). Oikos 68: 283–292. doi:10.2307/3544841

Keller, M., Kollmann, J. & Edwards, P. J. (2000). Genetic introgression from distant provenances reduces fitness in local weed populations. Journal of Applied Ecology 37: 647-659. doi: 10.1046/j.1365-2664.2000.00517.x

Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society of London B: Biological Sciences 274(1608): 303-313. doi: 10.1098/rspb.2006.3721

Korpela, E.L., Hyvönen, T., Lindgren, S. & Kuussaari, M. (2013). Can pollination services, species diversity and conservation be simultaneously promoted by sown wildflower strips on farmland? Agriculture, Ecosystems & Environment 179: 18-24. doi: 10.1016/j.agee.2013.07.001

Larson, B.M.H. & Barrett, S.C.H. (2000). A comparative analysis of pollen limitation in flowering plants. Biological Journal of the Linnean Society 69: 503–520. doi: 10.1111/j.1095-8312.2000.tb01221.x

Londo, G. (1976). The decimal scale for relevés of permanent quadrats. Plant Ecology 33(1): 61-64. doi: 10.1007/BF00055300

Neumayer, J. (2011). Bestäubung - Warum wir Bienen & Co brauchen. Natur & Land 2: 4–9.

Potts, S.G., Vulliamy, B., Dafni, A., Ne'eman, G. & Willmer P. (2003). Linking bees and flowers: how do floral communities structure pollinator communities? Ecology 84: 2628-2642. doi: 10.1890/02-0136

Proctor, M., Yeo, P. & Lack, A. (1996). The natural history of pollination. London: Harper Collins Publishers New Naturalist, 487 p.

R Development Core Team. (2015). R: a language and environment for statistical computing, version 3.3.1. R Foundation for Statistical Computing, Computer Program, Vienna.

Richards, A.J. (1978). The pollination of flowers by insects. London: Academic Press for the Linnean Society xi (Linnean Society Symposium Series 20. 6.), 213 p.

Rundlöf, M., Nilsson, H. & Smith, H.G. (2008). Interacting effects of farming practice and landscape context on bumble bees. Biological Conservation 141: 417-426. doi: 10.1016/j.biocon.2007.10.011

Rundlöf, M., Persson, A.S., Smith, H.G., & Bommarco, R. (2014). Late-season mass-flowering red clover increases bumble bee queen and male densities. Biological Conservation 172: 138-145. doi: 10.1016/j.biocon.2014.02.027

Scheuchl, E. & Willner, W., (2016). Taschenlexikon der Wildbienen Mitteleuropas: Alle Arten im Porträt. Quelle & Meyer Verlag, Wiebelsheim, 920 p.

Sharma, N., Koul, P. & Koul, A.K. (1993). Pollination biology of some species of genus Plantago L. Botanical Journal of the Linnean Society 111: 129-138. doi: 10.1111/j.1095-8339.1993.tb01895.x

Smilauer, P. & Leps, J. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge: Cambridge University Press, 2nd ed., 362 p.

Spiesman, B.J., Bennett, A., Isaacs, R. & Gratton, C. (2017). Bumble bee colony growth and reproduction depend on local flower dominance and natural habitat area in the surrounding landscape. Biological Conservation 206: 217-223. doi: 10.1016/j.biocon.2016.12.008

Thompson, H.M. (2001). Assessing the exposure and toxicity of pesticides to bumblebees (Bombus sp.). Apidologie 32: 305-321. doi: 10.1051/apido:2001131

Thompson, H.M. (2003). Behavioural effects of pesticides in bees–their potential for use in risk assessment. Ecotoxicology 12: 317-330. doi: 10.1023/A:1022575315413

Tscharntke, T., Steffan-Dewenter, I., Kruess, A. & Thies, C. (2002). Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecological Applications 12: 354-363. doi: 10.1890/1051-0761

Van Elsen, T., Godt, J., Haase, T., Fricke, T., Wachendorf, M., Saucke, H., Möller, D., Quintern, M., Otto, M., Kölsch, E., Baars, T. & Heß, J. (2007). E+ E-Projekt „Integration von Naturschutzzielen in den Ökologischen Landbau am Beispiel der Hessischen Staatsdomäne Frankenhausen “-Maßnahmen in der bewirtschafteten Fläche. 9. Wissenschaftstagung Ökologischer Landbau, Universität Hohenheim, Stuttgart, Deutschland. http://orgprints.org/view/projects/wissenschaftstagung-2007.html

Wood, T. J., Holland, J. M. & Goulson, D. (2015). Pollinator-friendly management does not increase the diversity of farmland bees and wasps. Biological Conservation 187: 120-126. doi: 10.1016/j.biocon.2015.04.022




DOI: http://dx.doi.org/10.13102/sociobiology.v65i4.3370

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699