Different Responses in Geographic Range Shifts and Increase of Niche Overlap in Future Climate Scenario of the Subspecies of Melipona quadrifasciata Lepeletier

Karina de Oliveira Teixeira, Thiago Cesar Lima Silveira, Birgit Harter-Marques

Abstract


Climate change is suggested to be one of the possible drivers of decline in pollinators. In this paper, we applied an ecological niche model to modeling distributional responses in face of climate changes for the subspecies of Melipona quadrifasciata Lepeletier. This species is divided into two subspecies based on difference in the yellow tergal stripes, which are continuous in M. q. quadrifasciata and interrupted in M. q. anthidioides. The geographic distribution of each subspecies is also distinct. M. q. quadrifasciata is found in colder regions in the Southern states of Brazil, whereas M. q. anthidioides is found in habitats with higher temperatures, suggesting that ecological features, such as adaption to distinct climatic conditions may take place. Thus, the possibility of having diff erent responses in geographic range shifts to future climate scenario would be expected. This study aimed to investigate the eff ects of climate changes on the distribution of the two M. quadrifasciata subspecies in Brazil, using an ecological niche model by the MaxEnt algorithm. Our results indicate that the subspecies showed clear diff erences in geographic shift patterns and increased climate niche overlap in the future scenarios. M. q. anthidioides will have the potential for an increase of suitable climatic conditinos in the Atlantic Forest, and towards the Pampa biome, while M. q. quadrifasciata will suffer a reduction of adequate habitats in almost all of its current geographic distribution. Given the potential adverse eff ects of climate changes for this subspecies, conservation actions are urgently needed to avoid that it goes extinct.


Keywords


stingless bee; climate niche; habitat suitability; species distribution modeling; hybridization

Full Text:

PDF

References


Araújo, E.D., Diniz-Filho, J.A.F. & Oliveira, F.A. (2000). Extinção de populações locais do gênero Melipona (Hymenoptera: Meliponinae): efeito do tamanho populacional e da produção de machos por operárias. Naturalia, 25: 287-299.

Batalha-Filho, H., Melo, G.A.R., Waldschmidt, A.M., Campos, L.A.O. & Fernandes-Salomão, T.M. (2009). Geographic distribution and spatial differentiation in the color pattern of abdominal stripes of the Neotropical stingless bee Melipona quadrifasciata (Hymenoptera: Apidae). Zoologia, 26: 213-219. doi: 10.1590/S1984-46702009000200003

Batalha-Filho, H., Waldschmidt, A.M., Campos, L.A.O., Tavares, M.G. & Fernandes-Salomão, T.M. (2010). Phylogeography and historical demography of the Neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): incongruence between morphology and mitochondrial DNA. Apidologie, 41: 534-547. doi: 10.1051/apido/2010001

Becher, M.A., Osborne, J.L., Thorbek, P., Kennedy, P.J. & Grimm, V. (2013). Towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. Journal of Applied Ecology, 50: 868-880. doi: 10.1111/1365-2664.12112

Broennimann, O., Fitzpatrick, M.C., Pearman, P.B., Petitpierre, B., Pellissier, L., Yoccoz, N.G., Thuiller, W., Fortin, M.J., Randin, C., Zimmermann, N.E., Graham, C.H. & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21: 481-497. doi: 10.1111/j.1466-8238.2011.00698.x

Devoto, M., Medan, D., Roig-Alsina, A. & Montaldo, N.H. (2009). Patterns of species turnover in plantpollinator communities along a precipitation gradient in Patagonia (Argentina). Austral Ecology, 34: 848-857. doi: 10.1111/j.1442-9993.2009.01987.x

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder , B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36: 27-46. doi: 10.1111/j.1600-0587.2012.07348.x

Dupont, Y.L., Damgaard, C. & Simonsen, V. (2011). Quantitative historical change in bumblebee (Bombus spp.) assemblages of red clover fi elds. PLoS One, 6: e25172. doi: 10.1371/journal.pone.0025172

Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC M Overton, J., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann, N. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29: 129-151. doi: 10.1111/j.2006.0906-7590.04596.x

Elith, J. Phillips, S., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43-57. doi: 10.1111/j.1472-4642.2010.00725.x

Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315. doi: 10.1002/joc.5086

Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. & White, L.L. (2014). IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Cambridge, United Kingdom and New York: Cambridge University Press, 1132 p. Retrieved from: https://www.ipcc.ch/report/ar5/wg3/

Fontana, C.S., Bencke, G.A. & Reis, R.E. (2003). Livro vermelho da fauna ameaçada de extinção no Rio Grande do Sul. Porto Alegre: EDIPUCRS. 632p.

Freeman, E.A. & Moisen, G. (2008). PresenceAbsence: An R Package for Presence-Absence Model Analysis. Journal of Statistical Software, 23(11): 1-31. doi: 10.18637/jss.v023.i11

Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.L. & Zang, M (2011). The community climate system model version 4. Journal of Climate, 24: 4973-4991. doi: 10.1175/2011JCLI4083.1

Giannini, T.C., Tambosi, L.R., Acosta, A.L., Jaffé, R., Saraiva, A.M., Imperatriz-Fonseca, V.L. & Metzger, J.P. (2015). Safeguarding ecosystem services: a methodological framework to buffer the joint effect of habitat confi guration and climate change. PLoS One, 10: e0129225. doi:10.1371/journal.pone.0129225

Holt, R.D. (1990). The microevolutionary consequences of climate change. Trends in Ecology and Evolution, 5: 311-315. doi: 10.1016/0169-5347(90)90088-U

IBGE (2004). Mapa de biomas do Brasil. http://www.ibge. gov.br. (accessed date: 1 March, 2018).

ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade. (2016). Livro vermelho da fauna brasileira ameaçada de extinção. http://www.icmbio.gov.br/portal/images/stories/comunicacao/publicacoes/publicacoesdiversas/dcom_sumario_executivo_livro_vermelho_da_fauna_brasileira_ameacada_de_extincao_2016.pdf. (accessed date: 15 March, 2018).

Imperatriz-Fonseca, V.L., Canhos, D.A.L., Alves, D.A. & Saraiva, A.M. (2012). Polinizadores e polinização: um tema global. In V.L. Imperatriz-Fonseca, D.A.L. Canhos, D.A. Alves & A.M. Saraiva (Eds.), Polinizadores no Brasil: contribuição e perspectivas para biodiversidade, uso sustentável, conservação e serviços ambientais (pp 23-45). São Paulo: EDUSP.

Juras, I.A.G.M. (2008). Aquecimento global e mudanças climáticas: uma introdução. Plenarium, 5(5): 34-46. Retrieved from: bd.camara.leg.br/bd/bitstream/handle/.../641/aquecimento_global_introducao.pdf?

Kerr, W.E. (1976). Population genetic studies in bees. 2. Sex-limited genes. Evolution, 30:94-99. doi: 10.1111/j.1558-5646.1976.tb00885.x

Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274: 303-313. doi: 10.1098/rspb.2006.3721

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L. & Hofer, H. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19: 1366-1379. doi: 10.1111/ddi.12096

Memmott, J., Craze, P.G., Waser, N.M. & Price, M.V. (2007). Global warming and the disruption of plantpollinator interactions. Ecology Letters, 10: 710-717. doi: 10.1111/j.14610248.2007.01061.x

Michener, C.D. (2007). The bees of the world. Maryland, USA: The Johns Hopkins University Press. 913p

Moretto, G. & Arias, M.C. (2005). Detection of mitochondrial DNA restriction site differences between the subspecies of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Neotropical Entomology, 34: 381-385. doi: 10.1590/S1519-566X2005000300004

Moure, J.S., Urban, D. & Melo, G.A.R. (2007). Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region. Curitiba: Sociedade Brasileira de Entomologia. 158p

Naimi, B. (2015). Usdm: uncertainty analysis for species distribution models. R package version 1.1-15. https://CRAN.R-project.org/package=usdm

Nascimento, M.A., Batalha-Filho, H., Waldschmidt, A.M., Tavares, M.G., Campos, L.A.O. & Fernandes-Salomão, T.M. (2010). Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern. Genetics and Molecular Biology, 33: 394-397. doi: 10.1590/S1415-47572010005000052

Oldroyd, B.P., Rinderer, T.E. & Buco, S.M. (1992) Intra-colonial foraging specialism by honey bees (Apis mellifera) (Hymenoptera: Apidae). Behavioral Ecology and Sociobiology, 30: 291-295. doi: 10.1007/BF00170594

Ollerton, J.; Winfree, R. & Tarrant, S. (2011). How many fl owering plants are pollinated by animals? Oikos, 120: 321- 326. doi: 10.1111/j.1600-0706.2010.18644.x

Peacock, B. (2012). Projected twenty-fi rst-century changes in temperature, precipitation, and snow cover over North America in CCSM4. Journal of Climate, 25: 4405-4429. doi: 10.1175/JCLI-D-11-00214.1

Pereboom, J.J.M. & Biesmeijer, J.C. (2003). Thermal constraints for stingless bee foragers: the importance of body size and coloration. Oecologia, 137: 42-50. doi: 10.1007/s00442-003-1324-2

Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231-259. doi: 10.1016/j.ecolmodel.2005.03.026

Phillips, S.J. & Dudı´k, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. doi:10.1111/j.0906-7590.2008.5203.x

Ramalho, M. (2004). Stingless bees and mass fl owering trees in the canopy of Atlantic Forest: a tight relationship. Acta Botanica Brasílica, 18: 37-47. doi:10.1590/S0102-33062004000100005

Rieseberg, L.H., Raymond, O., Rosenthal, D.M., Lai, Z., Livingstone, K., Nakazato, T., Durphy, J.L., Schwarzbach, A.E., Donovan, L.A. & Lexer, C. (2003). Major ecological transitions in wild sunfl owers facilitated by hybridization. Science, 301: 1211-1216. doi: 10.1126/science.1086949

Schwarz, H.F. (1948). Stingless bees of the western hemisphere. Bulletin of the American Museum of Natural History, 90: 1-546.

Silveira, F.A., Melo, G.A.R. & Almeida, E.A.B. (2002). Abelhas Brasileiras: sistemática e identifi cação. Belo Horizonte: Fundação Araucária, 253p

Soberón, J. & Nakamura, M. (2009). Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 106: 19644-19650. doi: 10.1073/pnas.0901637106

Souza, R.O., Moretto, G., Arias, M.C. & Del Lama, M.A. (2008). Differentiation of Melipona quadrifasciata L. (Hymenoptera, Apidae, Meliponini) subspecies using cytochrome b PCRRFLP patterns. Genetics and Molecular Biology, 30: 445-450. doi: 10.1590/S1415-47572008000300009

Tavares, M.G., Almeida, B.S., Passamani, P.Z., Paiva, S.R., Resende, H.C., Campos, A.O., Alves, R.M.O. & Waldschmidt, A.M. (2013). Genetic variability and population structure in Melipona scutellaris (Hymenoptera: Apidae) from Bahia, Brazil, based on molecular markers. Apidologie, 44: 720-728. doi: 10.1007/s13592-013-0220-y

Teixeira, L.V. & Campos, F.N.M. (2005). Início da atividade de vôo em abelhas sem ferrão (Hymenoptera, Apidae): infl uência do tamanho da abelha e da temperatura ambiente. Revista Brasileira de Zoociências, 7: 195-202. Retrieved from: https://zoociencias.ufjf.emnuvens.com.br/zoociencias/article/viewFile/156/146

Tossulino, M.G.P., Patrocínio, D.N.M. & Campos, J.B. (2006). Fauna do Paraná em extinção. Curitiba: Instituto Ambiental do Paraná. 244p

Vanbergen, A.J. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology Environment, 11: 251-259. doi: 10.1890/120126

Waldschmidt, A.M., Barros, E.G. & Campos, L.A.O. (2000). A molecular marker distinguishes the subspecies Melipona quadrifasciata quadrifasciata and Melipona quadrifasciata anthidioides (Hymenoptera: Apidae, Meliponinae). Genetics and Molecular Biology, 23: 609-611. doi: 10.1590/S1415-47572000000300019

Warren, D.L., Glor, R.E. & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62: 2868-2883. doi: 10.1111/j.1558-5646.2008.00482.x

Whitlock, M.C. (2000). Fixation of new alleles and the extinction of small populations: Drift load, benefi cial alleles, and sexual selection. Evolution, 54: 1855-1861. doi: 10.1111/j.0014-3820.2000.tb01232.x




DOI: http://dx.doi.org/10.13102/sociobiology.v65i4.3375

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699