Relationship Between Hydrocarbon Composition on the Cuticle of Melipona quadrifasciata (Hymenoptera: Apidae) Workers and the Secretion of the Cephalic Salivary Glands

Silvana B. Poiani, E. D. Morgan, Falko P Drijfhout, Carminda Cruz-Landim

Abstract


Since chemical communication is pivotal for social insect success, the present paper aimed to quantify and qualify the chemical compounds that might have pheromonal role in both cephalic salivary gland and epicuticle of workers of Melipona quadrifasciata Lepeletier using gas chromatographymass spectrometry (GC/MS). The results indicated that the hydrocarbons were the main compounds in both cephalic salivary gland and epicuticle, followed by esters. Positive Mantel correspondence analysis suggests that the glands could contribute to replenishment of surface compounds as an auxiliary source. Discriminant analysis also pointed out that gland and epicuticle chemical profi les were phase-related.


Keywords


CHC; labial gland; Mantel; pheromone; stingless bee

Full Text:

PDF

References


Abdalla, F.C., Jones, G.R., Morgan, E.D. & Cruz-Landim, C. (2003). Comparative study of the cuticular hydrocarbons composition of Melipona bicolor Lepeletier, 1836 (Hymenoptera, Meliponini) workers and queens. Genetics and Molecular Research, 2: 191-199.

Amsalem, E., Kiefer, J., Schulz, S. & Hefetz, A. (2014). The effect of caste and reproductive state on the chemistry of the cephalic labial glands secretion of Bombus terrestris. Journal of Chemical Ecology, 40: 900-912. doi: 10.1007/s10886-014-0484-3

Arnold, G., Quenet, B., Cornuet, J.M., Masson, C., Schepper, B. de, Estoup, A. & Gasqui, P. (1996). Kin recognition in honey bees. Nature, 379: 498. doi: 10.1038/379498a0

Bagnères, A.-G. & Blomquist, G.J. (2010). Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In G.J. Blomquist & A.-G. Bagnères (Eds.), Insect hydrocarbons: biology, biochemistry and chemical ecology (pp. 75-99). New York: Cambridge University Press.

Bagnères, A.-G. & Morgan, E.D. (1991). The postpharyngeal gland and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia, 47: 106-111. doi: 10.1007/BF02041269

Bergman, P. & Bergström, G. (1997). Scent marking, scent origin, and species specifi city in male premating behavior of two scandinavian bumblebees. Journal of Chemical Ecology, 23: 1235-1251. doi: 10.1023/B:JOEC.0000006461.69512.33

Blomquist, G. J. & Bagnères, A.-G. (2010). Insect hydrocarbons: Biology, biochemistry, and chemical ecology. Cambridge: Cambridge University Press, 506 p.

Boecking, O. & Spivak, M. (1999). Behavioral defenses of honey bees against Varroa jacobsoni Oud. Apidologie, 30: 141-158. doi: 10.1051/apido:19990205

Breed, M.D., Garry, M.F., Pearce, A.N., Hibbard, B.E., Bjostad, L.B. & Page, R.E. (1995). The role of wax comb in honey bee nestmate recognition. Animal Behaviour, 50: 489-496. doi: 10.1006/anbe.1995.0263

Buckner, J.L. (1993). Cuticular polar lipids in insects. In D.W. Stanley-Samuelson & D.R. Nelson (Eds.) Insect lipids: chemistry, biochemistry and biology (pp. 227-270). Nebraska: University of Nebraska Press.

Cruz-Landm, C. (1994). Polimorfi smo na ocorrência de glândulas exócrinas nas abelhas (Hymenoptera, Apoidea). Anais do Encontro Sobre Abelhas, Ribeirão Preto, 1: 118-129. Cruz-Landim, C. (2009). Abelhas: Morfologia e função de sistemas. São Paulo: Ed Unesp, 408 p.

Cruz-Landim, C., Stort, A.C., Cruz, M.A.C. & Kitajima, E.W. (1965). Órgão tibial dos machos de Euglossini. Estudo ao microscópio óptico e eletrônico. Revista Brasileira de Biologia, 25: 323-342.

D’Ettorre, P., Wenseleers, T., Dawson, J., Hutchinson, S., Boswell, T. & Ratnieks, F.L.W. (2006). Wax combs mediate nestmate recognition by guard honeybees. Animal Behaviour, 71: 773-779. doi: 10.1016/j.anbehav.2005.05.014

Danka, R.G. & Villa, J.D. (2005). An association in honey bees between autogrooming and the presence of migrating tracheal mites. Apidologie, 36: 331-333. doi:10.1051/apido:2005019

Gibbs, A. (2002). Lipid melting and cuticular permeability: new insights into an old problem. Journal of Insect Physiology, 48: 391-400. doi: 10.1016/S0022-1910(02)00059-8

Gu, X., Quilici, D., Juarez, P., Blomquist, G.J. & Schal, C. (1995). Biosynthesis of hydrocarbons and contact sex pheromone and their transport by lipophorin in females of German cockroach (Blatella germanica). Journal of Insect Physiology, 41: 257-267. doi: 10.1016/00221910(94)00100-U

Howard, R.W. (1993). Cuticular hydrocarbons and chemical communication. In D.W. Stanley-Samuelson & D.R. Nelson (Eds.), Insect lipids: chemistry, biochemistry and biology (pp. 179-226). Lincoln: University of Nebraska Press.

Howard, R.W. & Blomquist, G.J. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50: 371-393. doi: 10.1146/annurev.ento.50.071803.130359

Hrncir, M., Jarau, S., Zucchi, R. & Barth, F. (2000). Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. II. Possible mechanism of communication. Apidologie, 31: 93-113. doi: 10.1051/apido:2000109

Jarau, S., Hrncir, M., Zucchi, R. & Barth, F.G. (2004). A stingless bee uses labial gland secretions for scent trail communication (Trigona recursa Smith, 1863). Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 190: 233-239. doi: 10.1007/s00359-003-0489-9

Jarau, S., Schulz, C.M., Hrncir, M., Francke, W., Zucchi, R., Barth, F.G. & Ayasse, M. (2006). Hexyl decanoate, the fi rst trail pheromone compound identifi ed in a stingless bee, Trigona recursa. Journal of Chemical Ecology, 32: 1555-1564. doi: 10.1007/s10886-006-9069-0

Kaib, M., Eisermann, B., Schoeters, E., Billen, J., Franke, S. & Francke, W. (2000) Task-related variation of postpharyngeal and cuticular hydrocarbon compositions in the ant Myrmicaria eumenoides. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 186: 939-948. doi: 10.1007/s003590000146

Katzav-Gozansky, T., Soroker, V., Ionescu, A., Robinson, G.E. & Hefetz, A. (2001). Task-related chemical of labial gland volatile secretion in worker honeybees (Apis melífera ligustica). Journal of Chemical Ecology, 27: 919-926. doi: 10.1023/A:1010330902388

Kramer, S. & Wigglesworth, V.B. (1950). The outer layer of the cuticle in the coackroach Periplaneta americana and the function of the oenocytes. Journal of Cell Science, 91: 63-73.

Kullenberg, B., Bergström, G., Bringer, B., Calberg, B. & Cederberger, B. (1973). Observation of scent marking by Bombus Latr. and Psithyrus Lep. males (Hym., Apidae) and localization of site of production of the secretion. Zoon A Journal of Zoology, 1: 23-30.

Lindauer, M. & Kerr, W.E. (1960). Communication between the workers of stingless bees. Bee World, 41: 29-41 & 65-71. doi: 10.1080/0005772X.1960.11096767

Martin, J.S., Correia-Oliveira, M.E., Shemilt, S. & Drijfhout, F.P. (2018). Is the salivary gland associated with honey bee recognition compounds in worker honey bees (Apis mellifera)? Journal of Chemical Ecology, 44: 650-657. doi: 10.1007/s10886-018-0975-8

Meskali, M., Bonavita-Cougourdan, A., Provost, E., Bagnères, A.-G., Dusticier, G. & Clement J.-L. (1995). Mechanism underlying cuticular hydrocarbon homogeneity in the ant Camponotus vagus (Scop.) (Hymenoptera: Formicidae): role of postpharyngeal glands. Journal of Chemical Ecology, 21:1127-1148. doi: 10.1007/BF02228316

Morgan, E.D. (1990). Preparation of small scale samples from insects for chromatography. Analytica Chimica Acta, 236: 227-235. doi: 10.1016/S0003-2670(00)83316-4

Morgan, E.D. (2010). Biosynthesis in insects. Advanced edition. Cambridge: The Royal Society of Chemistry, 362 p.

Nunes, T.M., Morgan, E.D., Drijfhout, F.P. & Zucchi, R. (2010). Caste-specifi c cuticular lipids in the stingless bee.Apidologie, 41: 579-588. doi: 10.1051/apido/2010042

Nunes, T.M., Oldroyd, B.P., Elias, L.G., Matheus, S., Turatti, I.C. & Lopes, N.P. (2017). Evolution of queen cuticular hydrocarbons and worker reproduction in stingless bees. Nature: Ecology & Evolution, 1: 1-3. doi: 10.1038/s41559-017-0185

Poiani, S.B. & Cruz-Landim, C. (2009). Cephalic salivar gland ultrastructure of worker and queen eusocial bees (Hymenoptera, Apidae). Animal Biology, 59: 299-311. doi: 10.1163/157075609X454935

Poiani, S.B. & Cruz-Landim, C. (2010a). Morphological changes in the cephalic salivary glands of females and males of Apis mellifera and Scaptotrigona postica (Hymenoptera, Apidae). Journal of Biosciences, 35: 249-255. doi: 10.1007/s12038-010-0029-z

Poiani, S.B. & Cruz-Landim, C. (2010b). Changes in the size of cephalic salivary glands of Apis mellifera and Scaptotrigona postica (Hymenoptera, Apinae) queens and workers in diferente life phases. Zoologia, 27: 961-964. doi: 10.1590/S1984-46702010000600018

Poiani, S.B. & Cruz-Landim, C. (2010c). Cephelic salivar glands of two species of advanced eusocial bees (Hymenoptera: Apidae): morphology and secretion. Zoologia, 27: 979-985. doi: 10.1590/S1984-46702010000600021

Poiani, S.B. & Cruz-Landim, C. (2016). Ultrastructural detection of lipids in the cephalic salivary glands of Apis mellifera and Scaptotrigona postica (Hymenoptera: Apidae) workers. Zoologia, 33: e20150192. doi: 10.1590/S1984-4689zool-20150192

Poiani, S.B. & Cruz-Landim, C. (2017). Comparison and correlation between chemical profi le of cephalic salivar glands and cuticle surface of workers of Apis melífera (Hymenoptera, Apidae). Canadian Journal of Zoology, 95:453-461. doi: 10.1139/cjz-2016-0102

Poiani, S.B., Morgan, E.D., Drijfhout, F.P. & Cruz-Landim, C. (2014). Separation of Scaptotrigona postica workers into defi ned task groups by the chemical profi le on their epicuticle wax layer. Journal of Chemical Ecology, 40: 331-340. doi: 10.1007/s10886-014-0423-3

Poiani, S.B., Morgan, E.D., Drijfhout, F.P. & Cruz-Landim, C. (2015). Changes in the chemical profi le of cephalic salivar glands of Scaptotrigona postica (Hymenoptera, Meliponini) workers are phase related. Journal of Experimental Biology, 218: 2738-2744. doi: 10.1242/jeb.124180

Santos, C.G., Megiolaro, F.L., Serrão, J.E. & Blochtein, B. (2009). Morphology of the head salivary and intramandibular glands of the stingless bee Plebeia emerina (Hymenoptera: Meliponini) workers associated with propolis. Annals of the Entomological Society of America, 102: 137-143. doi: 10.1603/008.102.0115

Schorkopf, D.L.P., Jarau, S., Francke, W., Twele, R., Zucchi, R., Hrncir, M., Schmidt, V.M., Ayasse, M. & Barth, F.G. (2007). Spitting out information: Trigona bees deposit saliva to signal resource locations. Proceedings of the Royal Society B, 274: 895-898. doi: 10.1098/rspb.2006.3766

Simpson, J. (1960). The functions of the salivary glands of Apis mellifera. Journal of Insect Physiology, 4: 107-121. doi: 10.1016/0022-1910(60)90073-1

Singer, T.L. & Spelier, K.E. (1992). Social wasps use nest paper hydrocarbons for nestmate recognition. Animal Behaviour, 44: 63-68. doi: 10.1016/S0003-3472(05)80755-9

Stangler, E.S., Jarau, S., Hrncir, M., Zucchi, R. & Ayasse, M. (2009). Identifi cation of trail pheromone compounds from the labial glands of the stingless bee Geotrigona mombuca. Chemoecology, 19: 13-19. doi: 10.1007/s00049-009-0003-0

Terzo, M., Valterová, I. & Rasmont, P. (2007). Atypical secretions of the male cephalic labial glands in bumblebees: The case of Bombus (Rhodobombus) mesomelas Gerstaecker (Hymenoptera, Apidae). Chemistry & Biodiversity, 4: 1466-1471. doi: 10.1002/cbdv.200790124

Vollet-Neto, A., Oliveira, R.C., Schillewaert, S., Alves, D.A., Wenseleers, T., Nascimento, F.S., Imperatriz-Fonseca, V.L. & Ratnieks, F.L.W. (2017). Diploid male production results in queen death in the stingless bee Scaptotrigona depilis. Journal of Chemical Ecology, 43: 403-410. doi: 0.1007/s10886-017-0839-7

Wille, A. (1983). Biology of stingless bees. Annual Review of Entomology, 24: 123-147. doi: 10.1146/annurev.en.28.010183.000353

Wilson, E.O. (1985). The sociogenesis of insect colonies. Science, 228: 1489-1495. doi: 10.1126/science.228.4707.1489




DOI: http://dx.doi.org/10.13102/sociobiology.v65i4.3384

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699