Interaction Network and Niche Analysis of Natural Enemy Communities and their Host Bees (Hymenoptera: Apoidea) in fragments of Cerrado and Atlantic Forest

Reinanda Lima, Diego Moure Oliveira, Carlos Alberto Garófalo

Abstract


Natural enemies are important components of solitary bee communities that nest in preexisting cavities because they act as a relevant mortality factor and can regulate population growth. Despite this, the natural enemy-host interaction remains poorly investigated. This research aimed to determine the composition of the community, the structure of the interaction network, and niche overlap and breadth of natural enemy species in areas of Cerrado (Brazilian savanna) and Semideciduous seasonal forest (Atlantic Forest) in the state of São Paulo, Brazil. Trap-nests made of black cardboard and bamboo canes were provided in the field and inspected monthly in each area, from August 2001 to July 2003 at Cerrado and from June 2006 to May 2008 at the Semideciduous seasonal forest.  A modular structure in the interaction network was observed for both areas with the populations of natural enemies showing high degrees of specialization. This structure confers higher stability against disturbances than less specialized webs since these adversities must spread more slowly through the network. The niche analysis showed low degrees of overlap for both, trophic and temporal, among the natural enemy populations.

Keywords


Antagonistic interactions; Cleptoparasite; Cavity-nesters; Parasitoid; Solitary bees.

Full Text:

PDF

References


Andreazzi, C.S., Thompson, J.N., & Guimarães Jr, P.R. (2017). Network structure and selection asymmetry drive coevolution in species-rich antagonistic interactions. The American Naturalist, 190: 99-115. doi: 10.1086/692110.

Aguiar, A.J.C. & Martins, C.F. (2002). Abelhas e vespas solitárias em ninhos-amadilha na Reserva Biológica Guaribas (Mamanguape, Paraíba, Brasil). Revista Brasileira de Zoologia, 19: 101-116. doi: 10.1590/S0101-81752002000500005.

Aguiar, C.M.L., Garófalo, C.A. & Almeida, G.F. (2005). Trap-nesting bees (Hymenopera, Apoidea) in areas of dry semideciduous forest and Caatinga, Bahia, Brazil. Revista Brasileira de Zoologia, 22: 1030-1038. doi: 10.1590/S0101-81752005000400031.

Almeida-Neto, M. & Ulrich, W. (2011). A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modelling & Software, 2: 173-178. doi:10.1016/j.envsoft.2010.08.003.

Araujo, G.J.; Fagundes, R. & Itabaiana, Y.A. (2018). Trapnesting Hymenoptera and their network with parasites in recovered Riparian forests Brazil. Neotropical Entomology, 2: 1-11. doi: 10.1007/s13744-017-0504-4.

Bascompte, J., Jordano, P. & Olesen, J.M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312:431-433. doi: 10.1126/science.1123412.

Batra, S.W.T. (1984). Solitary bees. Scientifi c American, 250: 120-127. doi: 10.1038/scientifi camerican0284-120 Berryman, A.A. (2001). Functional web analysis: detecting the structure of population dynamics from multi-species time series. Basic and Applied Ecology, 2: 311-321. doi: 10.1078/1439-1791-00069.

Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A.P., Potts, S.G., Kleukers, R., Thomas, C.D., Settele, J. & Kunin, W.E. (2006). Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313: 351-354. doi: 10.1126/science.1127863.

Blüthgen, N., Menzel, F. & Blüthgen, N. (2006). Measuring specialization in species interaction networks. Ecology, 6: 1-12. doi: 10.1186/1472-6785-6-9.

Buys, S.C. (2008). Observations on the biology of Anchieta fumosella (Westwood 1867) (Neuroptera: Mantispidae) from Brazil. Tropical Zoology, 21: 91-95.

Camillo, E., Garófalo, C.A., Serrano, J.C. & Muccillo, G. (1995). Diversidade e abundância sazonal de abelhas e vespas solitárias em ninhos-armadilha (Hymenoptera, Apocrita, Aculeata). Revista Brasileira de Entomologia, 39: 459-70.

Castro-Arellano, I., Lacher, T. Jr., Willig, M.R. & Rangel, T.F. (2010). Assessment of assemblage-wide temporal niche segregation using null models. Methods in Ecology and Evolution, 1: 311-318. doi: 10.1111/j.2041-210X.2010.00031.x.

Dormann, C.F. & Strauss, R. (2014). A method for detecting modules in quantitative bipartite networks. Methods in Ecology and Evolution, 5: 90-98. doi: 10.1111/2041-210X.12139.

Feinsinger, P., Spears, E.E. & Poole, R.W. (1981). A simple measure of niche breadth. Ecology, 62: 27-32. doi: 10.2307/1936664.

Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R., Aizen, M.A., Bommarco, R., Cunningham, S.A. & Klein, A.M. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339: 1608–1611. doi: 10.1126/science.1230200

Gazola, A.L. & Garófalo, C.A. (2009). Trap-nesting bees (Hymenoptera: Apoidea) in forest fragments of the State of São Paulo, Brazil. Genetics and Molecular Research, 8: 607-622.

Hook, A.W., Oswald, J.D. & Neff, J.L. (2010). Plega hagenella (Neuroptera: Mantispidae) parasitism of Hylaeus (Hylaeopsis) sp. (Hymenoptera: Colletidae) reusing nests of Trypoxylon manni (Hymenoptera: Crabronidae) in Trinidad. Journal of Hymenoptera Research, 19: 77-83.

Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415-427. doi: 10.1101/SQB.1957.022.01.039.

Kearns, C.A., Inouye, D.W. & Waser, N.M. (1998). Endangered mutualisms: The conservation of plant-pollinator interactions. Annual Review of Ecology, Evolution and Systematic, 29, 83–112. doi: 10.1146/annurev.ecolsys.29.1.83.

Köppen, W.P. (1948). Climatologia. Fundo de Cultura Econômica. Cidade do México, Buenos Aires: 479 p.

Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Science, 274: 303–313. doi: 10.1098/rspb.2006.3721.

Krombein, K.V. (1967). Trap-nesting wasps and bees: life histories, nests and associates. Washington: Smithsonian Press, 510 p.

Le Féon, V., Burel, F., Chiffl et, R., Henry, M., Ricroch, A.E., Vaissière, B.E. & Baudry, J. (2013). Solitary bee abundance and species richness in dynamic agricultural landscapes. Agriculture, Ecosystems and Environment, 166: 94-101. doi: 10.1016/j.agee.2011.06.020.

Massol, F., & Petit, S. (2013). Interaction networks in agricultural landscape mosaics. In Advances in Ecological Research, 49: 291-338. doi: 10.1016/B978-0-12-420002-9.00005-6.

Mesquita, T.M.S. & Augusto, S.C. (2011). Diversity of trapnesting bees and their natural enemies in the Brazilian savanna. Tropical Zoology, 24: 127-144

Michener, C.D. (2007). The Bees of the World. 2nd Edition. Baltimore: The John Hopkins University Press, 953 p

Morato, E.F., Garcia, M.V.B. & Campos, L.A.O. (1999). Biologia de Centris Fabricius (Hymenoptera, Anthoporidae, Centridini) em matas contínuas e fragmentos na Amazônia Central. Revista Brasileira de Zoologia, 16: 1213-1222. doi: 10.1590/S0101-81751999000400029.

Mrvar, A. & Batagelj, V. (2018). Pajek and Pajek-XXL, Programs for Analysis and Visualization of Very Large Networks, Reference Manual. 112 p

Oliveira, P.S. & Gonçalves, R.B. (2017). Trap-nesting bees and wasps (Hymenoptera, Aculeata) in a Semidecidual Seasonal Forest fragment, southern Brazil. Papéis Avulsos de Zoologia, 57:149-156. doi: 10.11606/0031-1049.2017.57.13.

Olesen, J.M., Bascompte, J., Dupont, Y.L. & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences, 104: 19891-19896. doi: 10.1073/pnas.0706375104.

Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. (2015). Local and landscape effects in a host–parasitoid interaction network along a forest–cropland gradient. Ecological Applications, 25: 1869-1879. doi: 10.1890/14-2476.1.

Patefi eld, W.M. (1981). Algorithm AS159. An effi cient method of generating r x c tables with given row and column totals. Journal of Applied Statistics, 30: 91-97.

Pereira-Peixoto, M.H., Pufal, G., Staab, M., Martins, C.F. & Klein, A.M. (2016). Diversity and specifi city of host-natural enemy interactions in an urban-rural interface. Ecological Entomology, 41: 241-252. doi: 10.1111/een.12291.

Pianka, E.R. (1973). The structure of lizard communities. Annual Review of Ecology and Systematics, 4:53-74. doi: 10.1073/pnas.71.5.2141.

Pocock, M.J.O., Evans, D.M., Fontaine, C., Harvey, M., Julliard, R., McLaughlin, Ó., Silvertown, J., Tamaddoni-Nezhad, A., White, P.C.L.& Bohan, D.A. (2016). The Visualization of Ecological Networks, and Their Use as a Tool for Engagement, Advocacy and Management. In G. Woodward & D.A. Bohan (Eds.), Ecosystem Services: From Biodiversity to Society (pp. 41-85). Academic Press.

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25: 345–353. doi: 10.1016/j.tree.2010.01.007.

R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rocha-Filho, L.C., Rabelo, L.S., Augusto, S.C. & Garófalo, C.A. (2017). Cavity-nesting bees and wasps (Hymenoptera: Aculeata) in a semi-deciduous Atlantic forest fragment immersed in a matrix of agricultural land. Journal of Insect Conservation, 21: 727-736. doi: 10.1007/s10841-017-0016-x.

Rogers, S.R., Tarpy, D.R. & Burrack, H.J. (2014). Bee species diversity enhances productivity and stability in a perennial crop. PlosOne, 9: e97307. doi: 10.1371/journal.pone.0097307.

Roulston, T.H. & Goodell, K. (2011). The role of resources and risks in regulating wild bee populations. Annual Review of Entomology, 56: 293-312. doi: 10.1146/annurev-ento-120709-144802.

Schoener, T.W. (1986). Resource partitioning. In: J. Kikkawa & D.J. Anderson (Eds.), Community ecology pattern and process, (pp. 91-126). London: Blackwell Scientific.

Staab, M., Bruelheide, H., Durka, W., Michalski, S., Purschke, O.,Zhu, C.D., & Klein, A.M. (2016). Tree phylogenetic diversity promotes host–parasitoid interactions. Proceedings of the Royal Society B, 283:20160275. doi: 10.1098/rspb.2016.0275.

Tabanez, M.F., Durigan, G., Keuroghlian, A., Barbosa, A.F., Freitas, C.A., Silva, C.E.F. & Mattos, I.F.A. (2005). Plano de manejo da Estação Ecológica dos Caetetus. Instituto Florestal Série Registros, 29: 1-104.

Thébault, E. & Fontaine, C. (2010). Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks, Science 1: 329- 853. doi: 10.1126/science.1188321.

Teixeira, M.I.J.G., Araújo, A.R.B., Valeri, S.V. & Rodrigues, R.R. (2004). Florística e fi tossociologia de área de cerrado S.S. no município de Patrocínio Paulista, nordeste do Estado de São Paulo. Bragantia, 63: 1-11.

Tilman, D., Reich, P.B., Knops, J., Wedin, D., Mielke, T. & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294: 843-845. doi: 10.1126/science.1057544.

Ulrich, W. & Gotelli, N.J. (2010). Null model analysis of species associations using abundance data. Ecology, 91: 3384- 3397. doi: 10.1890/09-2157.1.

Wcislo, W.T. (1987). The roles of seasonality, host synchrony, and behaviour in the evolutions and distributions of nest parasites in the Hymenoptera (Insecta), with special reference to bees (Apoidea). Biological Review, 62: 515-543. doi: 10.1111/j.1469-185X.1987.tb01640.x.

Winfree, R., Williams, N.M., Gaines, H., Ascher, J.S. & Kremen, C. (2008). Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. Journal of Applied Ecology, 45: 793-802. doi: 10.1111/j.1365-2664.2007.01418.x




DOI: http://dx.doi.org/10.13102/sociobiology.v65i4.3386

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699