Wing morphometrics reveals the migration patterns of Africanized honey bees in Northeast Brazil

Caroline Julio Moretti, Claudineia Pereira Costa, Tiago Maurício Francoy


Climatic differences can directly affect the population structure of organisms. The Northeastern Brazilian covers an area of about 1.5 million square kilometres, in which the semi-arid part corresponds to approximately 60%. It is probably the most vulnerable region to climatic variations in Brazil. Here, we investigated the variability of Africanized honey bees in different localities from Northeast Brazil during the dry season and the influence of drought periods in morphological variation among populations. Analyses were carried out with data collected by traditional and geometric morphometrics of bees sampled during the dry season and showed a subtle morphological variation in agreement to the climatic pattern. Furthermore, once we added samples collected during the rainy season, we observed a change in its pattern, with a very different result from the same population sampled during drought periods. The geometric morphometrics results emphasized that samples collected during the rainy season in Mossoró would be more similar to bees from humid coastal areas. These results probably reflect the probable dispersion pattern of these bees between humid coastal and semi-arid areas.


Apis mellifera; drought; geometric morphometric; traditional morphometric; semi-arid climate; migration patterns

Full Text:



Batista, V.S.P., Fernandes, F.A., Cordeiro-Estrela, P., Sarquis, O. & Lima, M.M. (2013). Ecotope effect in Triatoma brasiliensis (Hemiptera: Reduviidae) suggests phenotypic plasticity rather than adaptation. Medical and Veterinary Entomology, 27: 247-254. doi: 10.1111/j.1365-2915.2012.01043.x

Debat, V., Bégin, M., Legout, H. & David, J.R. (2003). Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution, 57: 2773-2784. doi: 10.1111/j.0014-3820.2003.tb01519.x

Diniz-Filho, J.A.F., Hepburn, H.R., Radloff, S. & Fuchs, S. (2000). Spatial analysis of morphological variation in African honey bees (Apis mellifera L.) on a continental scale. Apidologie, 31: 191-204. doi: 10.1051/apido:2000116

Diniz-Filho, J.A.F. & Malaspina, O. (1995). Evolution and population structure of Africanized honey bees in Brazil: evidence from spatial analysis of morphometric data. Evolution, 49: 1172-1179. doi: 10.2307/2410442

Francoy, T.M., Wittmann, D., Drauschke, M., Müller, S., Steinhage, V., Bezerra-Laure, M.A.F., De Jong, D. & Gonçalves, L.S. (2008). Identifi cation of Africanized honey bees through wing morphometrics: two fast and effi cient procedures. Apidologie, 39: 488-494. doi: 10.1051/apido:2008028

Freitas, B.M., Sousa, R.M. & Bomfi m, I.G.A. (2007). Absconding and migratory behaviors of feral Africanized honey bee (Apis mellifera L.) colonies in NE Brazil. Acta Scientiarum. Biological Sciences, 29: 381-385.

Gonçalves, L.S. (1974). The introduction of the African Bees (Apis mellifera adansonii) into Brazil and some comments on their spread in South America. American Bee Journal, 114:414-419.

Jorge, L.R., Cordeiro-Estrela, P., Klaczko, L.B., Moreira, G.R.P. & Freitas, A.V.L. (2011). Host-plant dependent wing phenotypic variation in the neotropical butterfl y Heliconius erato. Biological Journal of the Linnean Society, 102: 765-774. doi: 10.1111/j.1095-8312.2010.01610.x

Klingenberg, C.P. (2011). MorphoJ: An integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353-357. doi: 10.1111/j.1755-0998.2010.02924.x

Marengo, J.A., Alves, L.M., Alvala, R.C.., Cunha, A.P., Brito, S. & Moraes, O.L.L. (2017). Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências. doi: 10.1590/0001-3765201720170206.

Miller, M.P. (1997). Tools for population genetic analysis (TFPGA) 1.3: A Windows program for the analysis of allozyme and molecular population genetic data. doi: 10.1111/j.1751-0813.1997.tb15381.x

Nunes, L.A. (2012). Estruturação populacional, variações fenotípicas e estudos morfométricos em Apis melífera (Hymenoptera: Apidae) no Brasil. Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo. doi: 10.11606/T.11.2012.TDE-22032012-101120

Rinderer, T., Buco, S., Rubink, W., Daly, H., Stelzer, J., Riggio, R. & Baptista, F. (1993). Morphometric identifi cátion of Africanized and European honey bees using large reference populations. Apidologie, 24: 569-585. doi: 10.1051/apido:19930605

Rohlf, F.J. (2015). The tps series of software. Hystrix, 26: 1-4. doi: 10.4404/hystrix-26.1-11264

Ruttner, F., Tassencourt, L. & Louveaux, J. (1978). Biometrical-statistical analysis of the geographical variability of Apis mellifera L. Apidolodie, 9: 363-381. doi: 10.1051/apido:19780408

Silva, V.D.P.R. (2004). On climate variability in Northeast of Brazil. Journal of Arid Environments, 58: 575-596. doi: 10.1016/j.jaridenv.2003.12.002

Souza, D.L., Evangelista-Rodrigues, A., Ribeiro, M.N., Álvarez, F.P., Farias, E.S.L & Pereira, W.E. (2009). Análises morfométricas entre Apis mellifera da mesorregião do sertão paraibano. Archivos de Zootecnia, 58: 65-71. doi: 10.4321/S0004-05922009000100007

Statsoft, I. (2004). StatSoft. Programa Comput. Stat. 7.0. E.A.U.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731-2739. doi: 10.1093/molbev/msr121



  • There are currently no refbacks.

JCR Impact Factor 2016: 0.699