Leucine-aminopeptidase A (LAP-A) Encoding Gene in Apoidea: from Genomic Identification to Functional Insights Based on Gene Expression

Luana Bataglia, Isabel Cristina Godoy, Marco Antonio Del Lama, Francis Morais Franco Nunes

Abstract


Aminopeptidases are enzymes that cleave the N-terminal region of proteins and show structural conservation in prokaryotes and eukaryotes. We aimed to identify leucine-aminopeptidase A (LAP-A) orthologs in the genome of bee species with diff erent levels of social organization, and to explore the putative roles of this enzyme based on gene expression data. We identified a single gene for LAP-A on chromosome 15 of Apis mellifera L. and predicted orthologs in genomes of 11 bee species. We found evidence of LAP-A expression in more than 50 bee species. In honeybee and other bees, LAP-A transcripts were expressed in diverse tissues, including: brains, fat bodies, ovaries, testicles, integuments, and glands, on diff erent developmental stages that spanned from embryogenesis to adult life. Our fi ndings on the transcriptional activity of LAP-A are consistent with previously published data on enzymatic activity of LAP-A in bees throughout the development in different tissues and in both sexes. The presence of LAP-A gene in the Apoidea genomes and its ubiquitous expression support housekeeping roles of this enzyme and broad-spectrum functions in bees, independente of their life styles.


Keywords


Lap-A, bee, gene expression, aminopeptidase, PCR

Full Text:

PDF

References


Abramoff, M.D., Magalhães, P.J. & Ram, S.J. (2004). Image processing with Image J. Biophotonics International, 11: 36-42.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215: 403-10.

Bartling, D. & Weiler, E.W. (1992). Leucine-aminopeptidase from Arabidopsis thaliana. Molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. European Journal of Biochemistry, 205: 425-31.

Bozić, N., Ivanović, J., Nenadović, V., Bergström, J., Larsson, T. & Vujcić, Z. (2008). Purifi cation and properties of major midgut leucyl aminopeptidase of Morimus funereus (Coleoptera, Cerambycidae) larvae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 149: 454-62. doi: 10.1016/j.cbpb.2007.11.006.

Del Lama, M.A. & Mestriner, M.A. (1984). Starch-Gel electrophoretic patterns of exopeptidase phenotypes in 14 different species of bees. Brazilian Journal of Genetics, 7: 9-20.

Del Lama, M.A., Bezerra, R.M., Soares, A.E.E. & Rúvolo-Takasusuki, M.C.C. (2001). Genetic, ontogenetic, and tissue-specifi c variation of aminopeptidases of Apis mellifera. Apidologie, 32: 1-11. doi: 10.1051/apido:2001106.

Del Lama, M.A. & Ferreira, K.M. (2003). Genetic characterization of the peptidases of Polistes versicolor (Hymenoptera: Vespidae). Brazilian Journal of Biology, 63: 291-9. doi: 10.1590/S1519-69842003000200014.

Dorus, S., Busby, S.A., Gerike, U., Shabanowitz, J., Hunt, D.F. & Karr, T.L. (2006). Genomic and functional Evolution of the Drosophila melanogaster sperm proteome. Nature Genetics, 38: 1440-5. doi: 10.1038/ng1915.

Ferré, J. & Van Rie, J. (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annual Review of Entomology, 47: 501–33. doi: 10.1146/annurev.ento.47.091201.145234.

Ferreira, C. & Terra, W.R. (1984). Soluble aminopeptidases from cytosol and luminal contents of Rhynchosciara americana midgut caeca. Properties and phenanthroline inhibition. Insect Biochemistry and Molecular Biology, 14: 145–50.

Gómez, I., Rodríguez-Chamorro, D.E., Flores-Ramírez, G., Grande, R., Zúñiga, F., Portugal, F.J., Sánchez, J., Pacheco, S., Bravo, A. & Soberón, M. (2018). Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is functional receptor of Bacillus thuringiensis Cry1Ca toxin. Applied and Environmental Microbiology, pii: AEM.01089-18. doi: 10.1128/AEM.01089-18.

Hatta, T., Tsuji, N., Miyoshi, T., Islam, M.K., Alim, M.A., Yamaji, K., Anisuzzaman & Fujisaki, K. (2010). Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes. Parasitology International, 59: 286-9. doi: 10.1016/j.parint.2010.03.001.

Hong, X.Q., Bouvier, J., Wong, M.M., Yamagata, G.Y.L. & McKerrow, J.H. (1993). Brugia pahangi: identifi cation and characterization of an aminopeptidase associated with larvae molting. Experimental Parasitology, 76: 127–33.

Kapheim, K.M., Pan, H., Li, C., Salzberg, S.L., Puiu, D., Magoc, T., Robertson, H.M., Hudson, M.E., Venkat, A., Fischman, B.J., Hernandez, A., Yandell, M., Ence, D., Holt, C., Yocum, G.D., Kemp, W.P., Bosch, J., Waterhouse, R.M., Zdobnov, E.M., Stolle, E., Kraus, F.B., Helbing, S., Moritz, R.F., Glastad, K.M., Hunt, B.G., Goodisman, M.A., Hauser, F., Grimmelikhuijzen, C.J., Pinheiro, D.G., Nunes, F.M.F., Soares, M.P., Tanaka, É.D., Simões, Z.L.P., Hartfelder, K., Evans, J.D., Barribeau, S.M., Johnson, R.M., Massey, J.H., Southey, B.R., Hasselmann, M., Hamacher, D., Biewer, M., Kent, C.F., Zayed, A., Blatti, C. 3rd., Sinha, S., Johnston, J.S., Hanrahan, S.J., Kocher, S.D., Wang, J., Robinson, G.E. & Zhang, G. (2015). Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. Science, 348(6239): 1139-43. doi: 10.1126/science.aaa4788.

Knowles, B.B. & Fristro m, J.W. (1967). The electrophoretic behaviour of ten enzyme systems in the larval integument of Drosophila melanogaster. Journal of Insect Physiology, 13: 731-7.

Liew, S.M., Tay, S.T. & Puthucheary, S.D. (2013). Enzymatic and molecular characterisation of leucine aminopeptidase of Burkholderia pseudomallei. BMC Microbiology, 13: 110. doi: 10.1186/1471-2180-13-110.

Lourenço, A.P., Mackert, A., Cristino, A.S. & Simões, Z.L. P. (2008). Validation of reference genes for gene expression. studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie, 39: 372. doi: 10.1051/apido: 2008015.

Matsui, M., Fowler, J.H. & Walling, L.L. (2006). Leucine aminopeptidases: diversity in structure and function. Biological Chemistry, 387(12): 1535-44. doi: 10.1515/BC.2006.191.

Mazza, R., Strozzi, F., Caprera, A. Ajmone-Marsan, P. & Willians, J.L. (2009). The other side of comparative genomics: genes with no ortologs between the cow and other mammalian species. BMC Genomics, 10: 604. doi: 10.1186/1471-2164-10-604.

McCulloch, R., Burke, M.E. & Sherratt, D.J. (1994). Peptidase activity of Escherichia coli aminopeptidase A is not required for its role in Xer site-specifi c recombination. Molecular Microbiology, 12: 241-51.

Miller, C.G. (1987). Protein degradation and proteolytic modifi cation. In F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter & H.E. Umbarger (Eds.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology (pp. 680-691). Washington, D.C.: AMS Press.

Nandan, A. & Nampoothiri, K.M. (2017). Molecular advances in microbial aminopeptidases. Bioresource Technology, 245(PtB): 1757-1765. doi: 10.1016/j.biortech.2017.05.103.

Nunes, F.M.F., Valente, V., Sousa, J.F., Cunha, M.A., Pinheiro, D.G., Maia, R.M., Araujo, D.D., Costa, M.C., Martins, W.K., Carvalho, A.F., Monesi, N., Nascimento, A.M., Peixoto, P.M., Silva, M.F., Ramos, R.G., Reis, L.F., Dias-Neto, E., Souza, S.J., Simpson, A.J., Zago, M.A., Soares, A.E., Bitondi, M.M., Espreafi co, E.M., Espindola, F.S., Paço-Larson, M.L., Simões, Z.L., Hartfelder, K. & Silva, W.A.Jr. (2004). The use of open reading frame ESTs (ORESTES) for analysis of the honey bee transcriptome. BMC Genomics, 5: 84. doi: 10.1186/1471-2164-5-84.

Pinto, L.Z., Hartfelder, K., Bitondi, M.M.G., Simões, Z.L. P. (2002). Ecdysteroid titers in pupae of highly social bees relate to distinct modes of caste development. Journal of Insect Physiology, 48(8): 783-790. doi: 10.1016/S0022-1910(02)00103-8.

Pires, C.V., Freitas, F.C., Cristino, A.S., Dearden, P.K. & Simões, Z.L. (2016). Transcriptome analysis of honeybee (Apis mellifera) haploid and diploid embryos reveals early zygotic transcription during cleavage. PLoS One, 11(1): e014 6447. doi: 10.1371/journal.pone.0146447.

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M.A. & Barrell, B. (2000). Artemis: sequence visualization and annotation. Bioinformatics, 16(10): 944-5.

Sanderink, G.J., Artur, Y. & Siest, G. (1988). Human aminopeptidases: a review of the literature. Journal of Clinical Chemistry and Clinical Biochemistry, 26: 795-807.

Schreiber, C.L. & Smith, B.D. (2018) Molecular imaging of aminopeptidase N in cancer and angiogenesis. Contrast Media & Molecular Imaging, 2018: 5315172. doi: 10.1155/2018/5315172.

Schumaker, T.T.S., Cristofoletti, P.T. & Terra, W.R. (1993). Properties and compartmentalization of digestive carbohydrases and proteases in Scaptotrigona bipunctata (Apidae: Meliponinae) larvae. Apidologie, 24: 3-17.

Sheppard, W.S. & McPheron, B.A. (1991). Ribosomal DNA diversity in Apidae. In D.R. Smith (Ed.), Diversity in the genus Apis (pp. 89-102). Boulder: Westview Press.

Spearman, R.I.C. (1973). The Integument: A Textbook of Skin Biology. Cambridge: Cambridge University Press, 211p.

Taylor, A. (1993). Aminopeptidases: towards a mechanism of action. Trends in Biochemical Sciences, 18(5): 167-71.

Terra, W.R. & Ferreira , C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology, 109B:1–62.

Togo, T. & Morisawa, M. (2004). GPI-anchored aminopeptidase is involved in the acrosome reaction in sperm of the mussel Mytilus edulis. Molecular Reproduction and Development, 67(4): 465-71. doi: 10.1002/mrd.20037.

Valencia., J.W., de Sá, M.F. & Jiménez, A.V. (2014). Activity of leucine aminopeptidase of Telchin licus licus: an importante pest of sugarcane. Protein & Peptide Letters, 21(6): 535-41. doi: 10.2174/0929866521666140110111539.

Yen, C., Green, L. & Miller, C.G. (1980). Degradation of intracellular protein in Salmonella typhimurium peptidase mutants. Journal of Molecular Biology, 143(1): 21-33.

Zee, R.Y.L., Rivera, A., Inostroza, Y., Ridker, P.M., Chasman, D.I. & Romero, J.R. (2018) Gene variation of endoplasmic reticulum aminopeptidases 1 and 2, and risk of blood pressure progression and incident hypertension among 17,255 initially healthy women. International Journal of Genomics, 2018: 23 08585. doi: 10.1155/2018/2308585.




DOI: http://dx.doi.org/10.13102/sociobiology.v65i4.3475

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699