Preliminary analysis of PGRP-LC gene and structure characteristics in bumblebees

Minming Chen, Nanhui Ye, Yanjie Liu, Jiandong An

Abstract


PGRP-LC is a significant pattern recognition receptor of the insect innate immune system that can recognize peptidoglycans and activate immune signaling pathways regulating the expression and release of antimicrobial peptides against infection. We for the first time analyzed the phylogenetic tree, purification and structure of bumblebee PGRP-LC. The results showed high conservation of bumblebee PGRP-LC among the 16 bumblebee species, and further phylogenetic analysis showed that the PGRP-LC phylogeny of different subgenera (Subterraneobombus, Megabombus, Melanobombus, Bombus) is consistent with that of the COI gene. Additionally, the phylogeny of PGRP-LCs among Bombus, Apis and the solitary bee Megachile rotundata coincides with the sociality evolution of bees. Moreover, bumblebee PGRP-LC (Bl-PGRP-LC) shares the Drosophila PGRP-LCx and PGRP-LCa topology, retaining conserved disulfide bonds and 80% binding residues involved in the interaction between TCT and PGRP-LCx. Therefore, Bl-PGRP-LC might share some similar binding characteristics with Drosophila PGRP-LCx. In addition, Bl-PGRP-LC has shorter β5 and β1 sheets, longer β2, β3, and β4 sheets and a shallow binding groove. To determine the characteristics of Bl-PGRP-LC, high-purity PGRP-LC inclusion bodies, soluble GST-tag Bl-PGRP-LC fusion protein and soluble pure Bl-PGRP-LC were obtained in vitro. The results will be helpful for further study of the function and structure of Bl-PGRP-LC.


Keywords


bumblebees, PGRP-LC, phylogenetic tree, purification.

Full Text:

PDF

References


An, J., Huang, J., Shao, Y., Zhang, S., Wang, B., Liu, X., Wu, J. & Williams, P. H. (2014). The bumblebees of North China (Apidae, Bombus Latreille). Zootaxa, 3830: 1-89. doi: 10.11646/zootaxa.3830.1.1.

Barribeau, S. M., Sadd, B. M., Du Plessis, L., Brown, M. J. F., Buechel, S. D., Cappelle, K., Carolan, J. C., Christiaens, O., Colgan, T, J., Erler, S., Evans, J., Helbing, S., Karaus, E., Lattorff, H. M., Marxer, M., Meeus, I., Näpflin, K., Niu, J., Schmid-Hempel, R., Smagghe, G., Waterhouse, R. M., Yu, N., Zdobnov, E. M. & Schmid-Hempel, P. (2015). A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol, 16: 83-83. doi: 10.1186/s13059-015-0628-y.

Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L. & Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res, 42: W252-258. doi:

1093/nar/gku340. Epub 2014 Apr 29.

Bienert, S., Waterhouse, A., de Beer, T. A., Tauriello, G., Studer, G., Bordoli, L. & Schwede T. (2017). The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res, 45: D313-D319. doi: 10.1093/nar/gkw1132. Epub 2016 Nov 29.

Bischoff, V., Vignal, C., Boneca, I. G., Michel, T., Hoffmann, J. A. & Royet, J. (2004). Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nat Immunol, 5: 1175-1180. doi: 10.1038/ni1123.

Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J. & Schwede, T. (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc, 4: 1-13. doi: 10.1038/nprot.2008.197.

Chang, C. I., Chelliah, Y., Borek, D., Mengin-Lecreulx, D. & Deisenhofer, J. (2006). Structure of tracheal cytotoxin in complex with a heterodimeric pattern-recognition receptor. Science, 311: 1761-1764. doi: 10.1126/science.1123056.

Chang, C. I., Ihara, K., Chelliah, Y., Mengin-Lecreulx, D., Wakatsuki, S. &

Deisenhofer, J. (2005). Structure of the ectodomain of Drosophila

peptidoglycan-recognition protein LCa suggests a molecular mechanism for pattern recognition. Proc Natl Acad Sci U S A, 102: 10279-10284. doi:

1073/pnas.0504547102.

Choe, K. M., Werner, T., Stoven, S., Hultmark, D. & Anderson, K. V. (2002). Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science, 296: 359-362. doi: 10.1126/science.1070216.

Dziarski, R. & Gupta, D. (2005). Peptidoglycan recognition in innate immunity. J Endotoxin Res, 11: 304-310. doi: 10.1179/096805105X67256.

Dziarski, R. & Gupta, D. (2006). The peptidoglycan recognition proteins (PGRPs). Genome Biol, 7: 232. doi: 10.1186/gb-2006-7-8-232.

Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., Kanost, M., Thompson, G. J., Zou, Z. & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol, 15: 645-656. doi: 10.1111/j.1365-2583.2006.00682.x.

Gendrin, M., Zaidman-Remy, A., Broderick, N. A., Paredes, J., Poidevin, M.,

Roussel, A. & Lemaitre, B. et al. (2013). Functional analysis of PGRP-LA in

Drosophila immunity. PLoS One, 8: e69742. doi:10.1371/journal.pone.0069742.

Goto, A., Yano, T., Terashima, J., Iwashita, S., Oshima, Y. & Kurata, S. (2010). Cooperative regulation of the induction of the novel antibacterial Listericin by peptidoglycan recognition protein LE and the JAK-STAT pathway. J Biol Chem, 285: 15731-15738. doi: 10.1074/jbc.M109.082115.

Goulson, D., Lye, G. C. & Darvill, B. (2008). Decline and conservation of bumble bees. Annu Rev Entomol, 53: 191-208. doi:10.1146/annurev.ento.53.103106.093454.

Guex, N., Peitsch, M. C. & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis, 30 Suppl 1: S162-173. doi: 10.1002/elps.200900140.

Hoffmann, J. A. (2003). The immune response of Drosophila. Nature: 426, 33-38. doi: 10.1038/nature02021.

Honeybee Genome Sequencing, C. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443: 931-949.

doi: 10.1038/nature05260.

Kaneko, T., Yano, T., Aggarwal, K., Lim, J. H., Ueda, K., Oshima, Y., Peach, C., Erturk-Hasdemir, D., Goldman, W. E., Oh, B. H., Kurata, S. & Silverman, N. (2006). PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol, 7: 715-723.

doi: 10.1038/ni1356.

Kang, D., Liu, G., Lundstrom, A., Gelius, E. & Steiner, H. (1998). A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proc Natl Acad Sci U S A, 95: 10078-10082. doi: 10.1073/pnas.95.17.10078.

Kumar, S., Stecher, G. & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol, 33: 1870-1874. doi: 10.1093/molbev/msw054.

Kurata, S. (2014). Peptidoglycan recognition proteins in Drosophila immunity. Dev Comp Immunol, 42: 36-41. doi: 10.1016/j.dci.2013.06.006.

Liu, C., Xu, Z., Gupta, D. & Dziarski, R. (2001). Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J Biol Chem, 276: 34686-34694. doi:10.1016/j.dci.2013.06.006.

Lu, X., Wang, M., Qi, J., Wang, H., Li, X., Gupta, D. & Dziarski, R. (2006).

Peptidoglycan recognition proteins are a new class of human bactericidal proteins. J Biol Chem, 281: 5895-5907. doi: 10.1074/jbc.M511631200.

Meeus, I., Brown, M. J., De Graaf, D. C. & Smagghe, G. (2011). Effects of invasive parasites on bumble bee declines. Conserv Biol, 25: 662-671.

doi: 10.1111/j.1523-1739.2011.01707.x.

Michel, T., Reichhart, J. M., Hoffmann, J. A. & Royet, J. (2001). Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature, 414: 756-759. doi: 10.1038/414756a.

Royet, J. & Dziarski, R. (2007). Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol, 5: 264-277. doi: 10.1038/nrmicro1620.

Royet, J., Gupta, D. & Dziarski, R. (2011). Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat Rev Immunol, 11: 837-851. doi: 10.1038/nri3089.

Sadd, B. M., Barribeau, S. M., Bloch, G., De Graaf, D. C., Dearden, P., Elsik, C. G., Gadau, J., Grimmelikhuijzen, C. J., Hasselmann, M., Lozier, J. D., Robertson, H. M., Smagghe, G., Stolle, E., Van Vaerenbergh, M., Waterhouse, R. M., Bornberg-Bauer, E., Klasberg, S., Bennett, A. K., Câmara, F., Guigó, R., Hoff, K., Mariotti, M., Munoz-Torres, M., Murphy, T., Santesmasses, D., Amdam, G. V., Beckers, M., Beye, M., Biewer, M., Bitondi, M. M., Blaxter, M. L., Bourke, A. F., Brown, M. J., Buechel, S. D., Cameron, R., Cappelle, K., Carolan, J. C., Christiaens, O., Ciborowski, K. L., Clarke, D. F., Colgan, T. J., Collins, D. H., Cridge, A. G., Dalmay, T., Dreier, S., du Plessis, L., Duncan, E., Erler, S., Evans, J., Falcon, T., Flores, K., Freitas, F. C., Fuchikawa, T., Gempe, T., Hartfelder, K., Hauser, F., Helbing, S., Humann, F. C., Irvine, F., Jermiin, L. S., Johnson, C. E., Johnson, R. M., Jones, A. K., Kadowaki, T., Kidner, J. H., Koch, V., Köhler, A., Kraus, F. B., Lattorff, H. M., Leask, M., Lockett, G. A., Mallon, E. B., Antonio, D. S., Marxer, M., Meeus, I., Moritz, R. F., Nair, A., Näpflin, K., Nissen, I., Niu, J., Nunes, F. M., Oakeshott, J. G., Osborne, A., Otte, M., Pinheiro, D. G., Rossié, N., Rueppell, O., Santos, C. G., Schmid-Hempel, R., Schmitt, B. D., Schulte, C., Simões, Z. L., Soares, M. P., Swevers, L., Winnebeck, E. C., Wolschin, F., Yu, N., Zdobnov, E. M., Aqrawi, P. K., Blankenburg, K. P., Coyle, M., Francisco, L., Hernandez, A. G., Holder, M.,

Hudson, M. E., Jackson, L., Jayaseelan, J., Joshi, V., Kovar, C., Lee, S. L., Mata, R., Mathew, T., Newsham, I. F., Ngo, R., Okwuonu, G., Pham, C., Pu, L. L., Saada, N., Santibanez, J., Simmons, D., Thornton, R., Venkat, A., Walden, K. K., Wu, Y. Q., Debyser, G., Devreese, B., Asher, C.,Blommaert, J., Chipman, A. D., Chittka, L., Fouks, B., Liu, J., O'Neill, M. P., Sumner, S., Puiu, D., Qu, J., Salzberg, S. L., Scherer, S. E., Muzny, D. M., Richards, S., Robinson, G. E., Gibbs, R. A., Schmid-Hempel, P. & Worley, K. C. (2015). The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol, 16: 76. doi: 10.1186/s13059-015-0623-3.

Schleifer, K. H. & Kandler, O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev, 36: 407-477.

Steiner, H. (2004). Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol Rev, 198: 83-96. doi:10.1111/j.0105-2896.2004.0120.x.

Takehana, A., Yano, T., Mita, S., Kotani, A., Oshima, Y. & Kurata, S. (2004). Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity. EMBO J, 23: 4690-4700. doi: 10.1038/sj.emboj.7600466.

Wang, M., Liu, L. H., Wang, S., Li, X., Lu, X., Gupta, D. & Dziarski, R. (2007). Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. J Immunol, 178: 3116-3125. doi: 10.4049/jimmunol.178.5.3116.

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, FT., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R. & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res, 46: W296-W303. doi: 10.1093/nar/gky427.

Werner, T., Borge-Renberg, K., Mellroth, P., Steiner, H. & Hultmark, D. (2003). Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J Biol Chem, 278: 26319-26322. doi: 10.1074/jbc.C300184200.

Werner, T., Liu, G., Kang, D., Ekengren, S., Steiner, H. & Hultmark, D. (2000). A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci U S A, 97: 13772-13777. doi: 10.1073/pnas.97.25.13772

Whelan, S. & Goldman, N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol, 18: 691-699. doi: 10.1093/oxfordjournals.molbev.a003851.

Williams, P. H., Brown, M. F., Carolan, J., Jian Dong, A., Goulson, D., Murat

Aytekin, A., Lincoln, R., Best Alexandr, M., Björn Cederberg, B., Dawson, R., Jia Xing, Huang., Ito, M., Monfared, A., H. Raina, R., Schmid-Hempel, P., S. Sheffield, C., Šima, P. & Zenghua, X. (2012). Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Systematics & Biodiversity, 10: 21-56.

doi: 10.1080/14772000.2012.664574.

Williams, P., Colla, S. & Zheng Hua, X. (2009). Bumblebee vulnerability: common correlates of winners and losers across three continents. Conserv Biol, 23: 931-940. doi: 10.1111/j.1523-1739.2009.01176.x.

Yoshida, H., Kinoshita, K. & Ashida, M. (1996). Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem, 271: 13854-13860. doi: 10.1074/jbc.271.23.13854

Yu, X. Q., Zhu, Y. F., Ma, C., Fabrick, J. A. & Kanost, M. R. (2002). Pattern

recognition proteins in Manduca sexta plasma. Insect Biochem Mol Biol, 32:

-1293. doi: 10.1016/S0965-1748(02)00091-7.

Zaidman-Remy, A., Herve, M., Poidevin, M., Pili-Floury, S., Kim, M. S., Blanot, D., Oh, B. H., Ueda, R., Mengin-Lecreulx, D. & Lemaitre, B. (2006). The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity, 24: 463-473. doi: 10.1016/j.immuni.2006.02.012.




DOI: http://dx.doi.org/10.13102/sociobiology.v66i2.4239

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.604