Glandular Secretions of Ants (Hymenoptera: Formicidae): A Review on Extraction, Chemical Characterization and Antibiotic Potential

Carin Guarda, Junir Antonio Lutinski

Abstract


Ants live under ideal microclimatic conditions for the development of microorganisms. As mechanisms to ensure the health of the colony and as a defense strategy, these insects developed exocrine glands that work in the production of antibiotics (chemical defense) and in the immune defense of the colony. This study aimed to describe the state-of-the-art on extraction methods, chemical characterization and the antibiotic potential of glandular secretions of ants. This is a review of the scientific literature between 1989 and 2017. A total of 52 articles were selected. These addressed the behavior, chemical characterization, the antimicrobial effect and evaluated methods of extraction. The most investigated genera are Atta, Acromyrmexand Crematogaster. The glands most reported in the articles involving extraction of secretions were Dufour, mandibular and metapleural. The most reported methods of extraction were gland maceration and extraction with (organic) solvents and direct extraction of the gland. Most studies evaluated secretions with respect to ant behavior. There is a paucityin the literature about the chemical characterization of most glandular secretions of ants, as well as for most taxa. The same deficiency is observed with regard to prospecting the antibiotic and antifungal potential of these secretions. for most taxa. The same deficiency is observed with regard to prospecting the antibiotic and antifungal potential of these secretions.


Keywords


Bioprospecting, metapleural gland, social insects, resistance to antibiotics, antimicrobial secretions.

Full Text:

PDF

References


Adams, R.M.M., Jones, T.H., Jeter, A.W., Licht, H.H.F., Schultz, T.R. & Nash, D.R. (2012). A comparative study of exocrine gland chemistry in Trachymyrmex and Sericomyrmex fungus-growing ants. Biochemical Systematics and Ecology, 40: 91-97. doi: 10.1016/j.bse.2011.10.011.

ANTWEB. (2018). Bolton World Catalog. https://www.antweb.org/. (Access date: February 1, 2018).

ANVISA - Agencia Nacional de Vigilância Sanitária (2018). Plano Nacional para a Prevenção e o Controle da Resistência Microbiana nos Serviços de Saúde. 84 p. file:///C:/Users/Aspire%20E15/Downloads/PLANO_DE_AO_RM_PARA_SERVIOS_DE_SAUDE%20.pdf . (Access date: May 31, 2018).

I’Allemand, S.L. & Witte, V. (2010). A sophisticated, modular communication contributes to ecological dominance in the

invasive ant Anoplolepis gracilipes. Biological Invasions, 12: 3551-3561. doi: 10.1007/s10530-010-9750-7.

Almeida, Z.G. & Farias, L.R (2014). Investigação epidemiológica das principais infecções nosocomiais no Brasil e identificação dos patógenos responsáveis: uma revisão bibliográfica. Revista Brasileira de Pesquisa em Ciências da Saúde, 1: 49-53. Retirado de: http://revistas.icesp.br/index.php/RBPeCS/article/viewFile/18/14.

Attygalle, A.B., Siegel, B., Vostrowsky, O., Bestmann, H.J. & Maschwitz, U (1989). Chemical composition and function of metapleural gland secretion of the ant, Crematogaster deformis smith (Hymenoptera: Myrmicinae). Journal of Chemical Ecology, 15: 317-328. doi: 10.1007/BF02027793

Baccaro, F.B., Feitosa, R.M., Fernández, F., Fernandes, I.O., Izzo, T.J., Souza, L.P. & Solar, R. (2015). Guia para gêneros de formigas no Brasil. INPA. 388p.

Billen, J., Hashim, R. & Ito, F. (2011). Functional morphology of the metapleural gland in workers of the ant Crematogaster

inflata (Hymenoptera, Formicidae). Invertebrate Biology, 130: 277–281. doi: 10.1111/j.1744-7410.2011.00230.x.

Billen, J. & Sobotník, J. (2015). Insect exocrine glands. Arthropod Structure & Development, 44: 399-400.doi: 10.1016/j.asd.2015.08.010.

Billen, J., Hashim, R. & Ito, F (2016). Ultrastructure of the mandibular gland of the ant Myrmoteras iriodum. Arthropod Structure and Development, 45: 320-324. doi: 10.1016/j.asd.2016.04.003.

Billen, J., Al-Khalifa, B. & Silva, R. (2017). Pretarsus structure in relation to climbing ability in the ants Brachyponera sennaarensis and Daceton armigerum. Saudi Journal of Biological Sciences, 24: 830-836. doi: 10.1016/j.sjbs.2016.06.007.

Billen, J. (2017). The exocrine system of Aneuretus simoni (Formicidae, Aneuretinae). Asian Myrmecology, 9: 1-16. doi:

20362/am.009011

Billen, J. & Al-Khalifa, M. (2018). Morphology and ultrastructure of the mandibular gland in the ant Brachyponera sennaarensis (Hymenoptera, Formicidae). Micron, 104: 66-71. doi: 10.1016/j.micron.2017.10.010.

Bot, A.N.M., Ortius-Lechner, D., Finster, K., Maile, R. & Boomsma, J.J. (2002). Variable sensitivity of fungi and bacteria to compounds produced by the metapleural glands of leaf-cutting ants. Insectes sociaux, 49: 363-370. doi: 10.1007/PL00012660.

Brindis, Y., Lachaud, J.P., Gómez, Y.G.B., Rojas, J.C., Malo, Edi A. & Cruz-López, L (2008). Behavioral and Olfactory

Antennal Responses of Solenopsis geminata (Fabricius) (Hymenoptera: Formicidae) Workers to their Dufour Gland Secretion. Neotropical Entomology, 37: 131-136. doi: 10.1590/S1519-566X2008000200004.

Cammaerts, M.C. & Cammaerts, R (1998). Marking of nest entrance vicinity in the ant Pheidole pallidula (Formicidae,

Myrmicinae). Behavioural Processes, 42: 19-31. doi: 10.1016/ S0376-6357(97)00058-2.

Campos, A.E.C (2011). Formigas causadoras de danos à saúde. In: Marcondes, C. B.Entomologia médica e veterinária.2ª

edição. São Paulo, Editora Atheneu, pp. 239-248.

Campos, R.S., Mendonça, A.L., Cabral, C.R., Vaníčková, L. & Do Nascimento, R.R. (2016). Chemical and behavioural studies of the trail-following pheromone in the leaf-cutting ant Atta opaciceps, Borgmeier (Hymenoptera: Formicidae), Journal of Insect Physiology, 86: 25-31. doi: 10.1016/j.jinsphys.2015.12.008.

Castella, G., Christe. P. & Chapuisat, M. (2010). Covariation between colony social structure and immune defenses of workers in the ant Formica selysi, Insectes Sociaux, 57: 233-338. doi: 10.1007/s00040-010-0076-3.

Castracani, C., Tullio, A., Grasso, D. A., Visicchio, R., Mori, A., Moli, F., Reale, S. & Angelis, F (2003). Determination of the mandibular gland secretion of Polyergus rufescens queens by solid-phase microextraction and gas chromatography/mass

spectrometry. Journal of Mass Spectrometry, 38: 1288-1289. doi: 10.1002/jms.534.

Cruz-Lopez, L., Rojas, J.C., Cruz-Cordero, R. & Morgan, E.D. (2001). Behavioral and chemical analysis of venom gland secretion of queens of the ant Solenopsis geminata. Journal of Chemical Ecology, 27: 2437-2445. doi: 10.1023/A:1013671330253.

Dahbi, A. & Lenoir, A. (1998). Nest separation and the dynamics of the Gestalt odor in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae). Behavioral Ecology and Sociobiology, 42: 349-355. doi: 10.1007/s002650050.

Dahbi, A., Hefetz, A. & Lenoir, A (2008). Chemotaxonomy of some Cataglyphis ants from Morocco and Burkina Faso.

Biochemical Systematics and Ecology, 36: 1-9. doi: 10.1016/j.bse.2008.03.004.

D’Ettorre, P., Errard, C., Ibarra, F., Francke, W. & Hefetz, A. (2000). Sneak in or repel your enemy: Dufour’s gland repellent as a strategy for successful usurpation in the slavemaker Polyergus rufescens, 10: 3 135-142. doi: 10.1007/PL00001815.

Fernández, F. (2003). Introducción a las hormigas de la región neotropical. Instituto de Investigación de Recursos Biológicos

Alexander von Humboldt, 398 p.

Fernández-Marin, H., Nash, D.R., Higginbotham, S., Estrada, C., Zweden, J.S.V., D’Ettorre, P., Wcislo, W.T. & Boomsma, J.J. (2015). Functional role of phenylacetic acid from metapleural gland secretions in controlling fungal pathogens in evolutionarily derived leaf-cutting ants. The Royal Society Publishing, 282: 1-9. doi: 10.1098/rspb.2015.0212.

Fujiwara-Tsujii, N., Nobuhiro, Y., Takeda, T., Mizunami, M. & Yamaoka, R. (2006). Behavioral Responses to the Alarm Pheromone of the Ant Camponotusobscuripes (Hymenoptera:Formicidae). Zoological Science, 23: 353-358. doi:10.2108/zsj.23.353.

Guenard, B., Weiser, M.D. & Dunn, R.R. (2012). Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proceedings of the National Academy of Sciences, 109: 7368-7373. doi: 10.1073/pnas.1113867109.

Junqueira, L.K. & Diehl, E. (2014). The Metapleural Secretion of Acromyrmex laticeps (Forel) does not have Fungicide Effect on the Entomopathogenic Fungus Beauveria bassiana (Bals.) Vuill. Entomo Brasilis, 7: 207-210. doi:10.12741/ebrasilis.v7i3.449.

Jones, T.H., Clark, D.A., Edwards, A.A., Davidson, D.W., Spande, T.F.& Snelling, R.R. (2004). The chemistry of exploding ants, Camponotus spp. (cylindricus complex).Journal of Chemical Ecology, 30: 1479-1492. doi: 10.1023/B:JOEC.0000.

Jones, T.H., Voegtle, H.L., Miras, H.M., Weatherford, R.G., Spande, T.F., Garraffo, H.M., Daly, J.W., Davidson, D.W. & Snelling, R. R (2007). Venom chemistry of the ant Myrmicaria melanogaster from Brunei. Journal of Natural Products, 70: 160-168. doi: 10.1021/np068034t.

Hernandez, J.V., Cabrera, H. & Jaffe, K. (1999). Mandibular gland secretion in different castes of the leaf-cutter ant Atta laevigata. Journal of Chemical Ecology, 25: 2433-2444. doi:10.1023/A:102081390.

Hölldobler, B. & Wilson, E.O (1990). The Ants. Cambridge: Harvard University Press, 732 p.

Hölldobler, B., Oldham, N.J., Alpert, G.D. & Liebig, J. (2002). Predatory behavior and chemical communication in two Metapone species (Hymenoptera: Formicidae), Chemoecology, 12: 147-151.

Hölldobler, B., Morgan, D.E., Oldham, N.J., Jürgen, L. Yue, L (2004). Dufour gland secretion in the harvester ant genus Pogonomyrmex. Chemoecology, 14: 101-106. doi: 10.1007/s00049-003-0267-8.

Kohl, E., Hölldobler, B. & Bestmann, H. J. A. (2000). Trail pheromone component of the ant Mayriellaoverbecki Viehmeyer (Formicidae: Myrmicinae), 87: 320-322. doi: 10.1007/s001140050.

Laurent, P., Hamdani, A., Braekman, J.C., Daloze, D., Lynne,A,. Isbell, L.A., Biseau, J.C., & Pasteels, J.M. (2003). New 1-alk(en)yl-1,3,5-trihydroxycyclohexanes from the Dufour gland of the African ant Crematogaster nigriceps. Tetrahedron Letters, 44: 1383-1386. doi: 10.1016/S0040-4039(02)02870-8

Lahav, S., Soroker, V., Vander Meer, R.K. & Abraham, H. (1998).Direct Behavioral Evidence for Hydrocarbons as Ant Recognition Discriminators.Behavioral Ecology and Sociobiology, 43: 203-212.

Lahav, S., Soroker, V. & Hefetz, A. (1999). Direct Behavioral Evidence for Hydrocarbons as Ant Recognition Discriminators. Naturwissenschaften, 86: 246-249. doi: 10.1303/aez.2004.381.

Leclercq, S., Biseau, J.C., Braekman, J.C., Daloze, D., Quinet, Y., Luhmer, M., Sundin, A. & Pasteels, J. M. (2000). Furanocembranoid Diterpenes as Defensive Compounds in the Dufour Gland of the Ant Crematogaster brevispinosarochai,

: 2037-2042.

Leclercq, S., Biseau, J.C., Daloze, D., Braekman, J. C., Quinet, Y. & Pasteels, J. M. (2000). Five new furanocembrenoids from

the venom of the ant Crematogaster brevispinosa ampla from Brazil, 41: 633-637. doi: 10.1016/S0040-4039(99)02127-9}.

Liu, H.W., Lu, Y.Y., Wang, W.K. & Chen, L. (2017). Whole body solvent soak gives representative venom alkaloid profile from Solenopsis invicta (Hymenoptera: Formicidae) workers. Florida Entomologist, 100: 522-527. doi: 10.1653/024.100.0305.

Loureiro. R. J., Roque, F., Rodrigues, A. T., Herdeiro, M.T. & Ramalheira, E. (2016). O uso de antibióticos e as resistências

bacterianas: breves notas sobre a sua evolução. Revista Portuguesa de Saúde Pública, 4: 77-84. doi: 10.1016/j.rpsp.2015.11.003.

Lommelena, E., Johnsonb, C.A., Drijfhoutc, F.P., Billena, J. &Gobind, B. (2008). Egg marking in the facultatively queenless ant Gnamptogenysstriatula: The source and mechanism. Journal of Insect Physiology, 54: 727-736. doi: 10.1016/j.jinsphys.2008.02.002.

Lutinski, J.A., Lutinski, C.J., Lopes, B.C. & Morais, A.B.B. (2017). Efeitos microclimáticos e temporais sobre a assembléia de formigas (Hymenoptera: Formicidae) de áreas urbanas do oeste de Santa Catarina. In: Lutinski, J.A. Formigas em ambientes urbanos de Santa Catarina. CRV, p. 95-123.

Maciel, C.C.S. & Cândido, H.R.L.F. (2010). Infecção hospitalar: principais agentes e drogas administradas. Revista Eletrônica

de Ciências, 3: 33-43. Retrieved from: http://veredas.favip.edu. br/ojs/index.php/veredas1/article/view/107/222.

Marsaro-Júnior, A.L., Della-Lucia, T.M.C.; Barbosa, L.C.A., Maffia, L.A. &Morandi, M.A.B. (2001). Efeito de Secreções da Glândula Mandibular de Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae) Sobre a Germinação de Conídios de Botrytis cinerea Pers. Fr. Neotropical Entomology, 30: 403-406. doi: 10.1590/S1519-566X2001000300010.

Melo, G.M. & Fortich, M.R.O. (2013). Actividad antibacterial de extractos de hormigas de los géneros Crematogastery Solenopsis. Revista Colombiana de Ciéncias Químico- Farmacéuticas, 42: 42-55.

Mendes, K.D.S., Silveira, R.C.C.P. & Galvâo, C.M (2008). Revisão integrativa: método de pesquisa para a incorporação de evidências na saúde e na enfermagem. Texto Contexto Enfermagem, 17: 758-64. doi: 10.1590/S0104-07072008000400018

Nascimento. R., Schoeters, E., Morgan, D., Billen, J. & Stradling, D.J. (1996). Chemistry of metapleural gland secretions of three attine ants, Atta sexdensrubropilosa, Atta cephalotes, and Acromyrmex octospinosus (Hymenoptera:Formicidae). Journal of Chemical Ecology, 22: 987- 1000. doi: 10.1007/BF02029949.

Mitra, A. (2013). Function of the Dufour’s gland in solitary and social Hymenoptera. Journal of Hymenoptera Research, 35: 33-58. doi: 10.3897/jhr.35.4783.

Penick, C., Halawani, O., Pearson, B., Mathew, S., López-Uribe, M.M., Dunn, R.R. & Smith, A.A. (2018). External immunityin ant societies: sociality and colony size do not predict investmentin antimicrobials. Royal Society Open Science, 5: 1-8. doi:10.1098/rsos.171332.

Mori, A., Grasso, D.A., Visicchio, R. & Le Moli, F. (2000). Colony founding in Polyergus rufescens: the role of the Dufour’s gland. Insectes Sociaux, 47: 7-10. doi: 10.1007/s000400050.

Martins, L.C.B., Nascimento, F.S., Campos, M.C.G., Lima, E.R., Zanuncio, J.C. & Serrão, J.E. (2015). Chemical composition of the intramandibular glands of the ant Neoponera villosa (Fabricius, 1804) (Hymenoptera:Ponerinae). Chemoecology, 25: 25-31. doi: 10.1007/s0004.

Mendonça, A.L., Silva, C.E., Mesquita, F.L.T., Campos, R.S., Nascimento, R.R., Ximenes, E.C.P.A. & Sant’Ana, A.E. (2009). Antimicrobial activities of components of the glandular secretions of leaf cutting ants of the genus Atta. Antonie van Leeuwenhoek, 95: 295-303. doi:10.1007/s10482-009-9312-0.

Moreau, C.S. & Bell, C.D. (2013). Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution, 67: 2240-2257. doi: 10.1111/evo.12105.

Nascimento, R., Schoeters, E., Morgan, E.D.,Billen, J. & Stradling, D.J. (1996). Chemistry of metapleural gland secretions of three attine ants, Attasexdens rubropilosa, Atta cephalotes, and Acromyrmex octospinosus (Hym.: Formicidae). Journal of

Chemical Ecology, 22:987-1000. doi: 10.1007/BF02029949.

Nikbakhtzadeh, M.R., Tirgari, S., Fakoorziba, M.R. & Alipour, H. (2009). Two volatiles from the venom gland of the Samsum ant, Pachycondyla sennaarensis. Toxicon, 54: 80-82. doi:10.1016/j.toxicon.2009.03.005.

Norman, V.C., Butterfield. T., Drijfhout, F., Tasman, K. & Hughes, W.O.H. (2017). Alarm Pheromone Composition and Behavioral Activity in Fungus-Growing Ants.Journal of Chemical Ecology, 43: 225-235. doi: 10.1007/s10886-017-0821-4.

Ortius-Lechner, D., Maile, R., Morgan, E.D. & Boomsma, J.J. (2000). Metapleural gland secretion of the leaf-cutter ant Acromyrmex octospinosus: New compounds and their functional significance. Journal of Chemical Ecology. 26:1667-1683. doi: 10.1023/A:100554303.

Ortius-Lechner, D., Maile, R., Morgan, E.D., Petersen, H.C. & Boomsma, J.J. (2003). Lack of patriline-specific differences in chemical composition of the metapleural gland secretion in Acromyrmex octospinosus, Insectes Sociaux, 50: 113-119. doi: 10.1007/s00040-003.

Pech, P. & Billen, J. (2017). Structure and development of the metapleural gland in Technomyrmex vitiensis. Insectes Sociaux, 64:387-392. doi: 10.1007/s00040-017-0560-0.

Plowes, N.J.R., Colella. T., Johnson, R.A. & Hölldobler, B. (2014). Chemical communication during foraging in the harvesting ants Messorpergandei and Messorandrei. Journal of Comparative Physiology, 200: 129-137. doi: 10.1007/s00359-013-0868-9.

Quinet, Y., Vieira, R.H.S.F., Sousa, M.R., Evangelista- Barreto, N.S., Carvalho, F.C.T., Guedes, M.I.F., Alves, C.R., De Biseau, J.C. & Heredia, A. (2012). Antibacterial properties of contact defensive secretions in neotropical Crematogaster ants. Journal Venomous Animals Toxins Including Tropical Diseases, 18: 441-445. doi: 10.1590/S1678-91992012000400013.

Rifflet, A., Tene, N., Orivel, J., Treilhou, M., Dejean, A. & Vetillard, A. (2011). Paralyzing Action from a Distance in an Arboreal African Ant Species, PLoS ONE, 6: 1-9.

Rojas, J.C., Brindis, Y., Malo, E.A. & Cruz-López, L. (2004). Influence of queen weight and colony origin on worker response in Solenopsis geminate. 29: 356-362.

Ruano, F., Hefetz, A., Lenoir, A., Francke, W. & Tinaut, A. (2005). Dufour’s gland secretion as a repellent used during usurpation by the slave-maker ant Rossomyrmex minuchae. Journal of Insect Physiology, 51: 1158- 1164. doi: 10.1016/j.jinsphys.2005.06.005.

Ruel, C., Lenoir, A., Cerdá, X. & Boulay, R. (2013). Surface lipids of queen-laid eggs do not regulate queen production in a fission-performing ant. Naturwissenschaften, 100: 91-100. doi: 10.1007/s00114-012-0997-y.

Sainz-Borgo, C., Leal, B., Cabrera, A. & Hernández, J.E. (2013). Mandibular and postpharyngeal gland secretions of Acromyrmex landolti (Hym.: Formicidae) as chemical cues for nestmate recognition. Revista de Biologia Tropical, 61: 1261-1273.

Serrão, J.E., Martins, L.C.B., Santos, P.P. & Gonçalves, W.G. (2015). Morfologia interna de poneromorfas. In: Delabie, J.H.C., Feitosa, R.M., orgs. Serrão, J.E., Mariana, C.S.F., Majer, J.D. (orgs). As formigas poneromorfas do Brasil. Editus, p. 247-269.

Song, Z., Liu, P., Yin, W., Jiang, Y. L. & Ren, Y. L (2012). Isolation and identification of antibacterial neo-compounds from the red ants of Chang Bai Mountain, Tetramorium sp. Bioorganic and Medicinal Chemistry Letters, 22: 2175-2181. doi: 10.1016/j.bmcl.2012.01.112.

Souza, M.T., Silva, M.D. & Carvalho, R. (2010). Revisão integrativa: o que é e como fazer? Einstein, 8: 102-106. doi: 10.1590/s1679-45082010rw1134.

Tranter, C., Fernandez-Marin, A. & Hughes, W.O. (2015). Quality and quantity: transitions in antimicrobial gland use for parasite defense. Ecology and Evolution, 5: 5857-5868. doi: 10.1002/ece3.1827.

Tragust, S., Mitteregger, B.V.B., Ugelvig, M.L.V. & Cremer, S. (2013). Ants Disinfect Fungus-Exposed Brood by Oral Uptake and Spread of Their Poison. Current Biology, 23: 76-82. doi: 10.1016/j.cub.2012.11.034.

Tragust, S (2016). External immune defense in ant societies (Hymenoptera: Formicidae): the role of antimicrobial venom and metapleural gland secretion.Myrmecological News, 23:119-128.

Wang, L. & Chen, J. (2015). Fatty Amines from Little Black Ants, Monomorium minimum, and Their Biological Activities Against Red Imported Fire Ants, Solenopsis invicta. Journal of Chemical Ecology, 41: 708-715. doi: 10.1007/s10886-015-0609-3.

Ward, P.S (2010). Taxonomy, phylogenetics and evolution. In: Lach, L.; Parr, C.; Abbot, K. (org.), Ant Ecology, Oxford University Press, p. 3-17.

Wood, W.F., Palmer, T.M., Maureen, L. & Stanton, M.L. (2002). A comparison of volatiles in mandibular glands from three Crematogaster ant symbionts of the whistling thorn acacia. Biochemical Systematics and Ecology, 30: 217-222. doi: 10.1016/S0305-1978(01)00099-0.

Wood, W.F., Hoang, T.T. & Mcglynn, T.P. (2011). Volatile components from the mandibular glands of the turtle ants, Cephalotes alfaroi and Cephalotes cristatus. Biochemical Systematics and Ecology, 39: 135-138. doi10.1016/j.bse.2011.01.013.

Yek, S.H. & Mueller, U.G. (2011). The metapleural gland of ants. Biological Reviews, 86: 774-791. doi: 10.1111/j.1469-

X.2010.00170.x.

Yek, S. H., Nash, D.R., Jensen, A.B. & Boomsma, J. J. (2012). Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proceedings of the Royal Society B,279: 4215-4222. doi: 10.1098/rspb.2012.1458.

Vander Meer, R.V. (2012). Ant Interactions with Soil Organisms and Associated Semiochemicals. Journal of Chemical Ecology,

: 728-745. doi: 10.1007/s10886-012-0140-8.

Vander Meer, R.K.; Preston, C.A. & Cho, M.Y. (2010). Isolation of a Pyrazine Alarm Pheromone Component from the Fire Ant, Solenopsis invicta. Journal of Chemical Ecology, 36:163-170. doi: 10.1007/s10886-010-9743-0.

Vieira, A.S., Bueno, O.C. & Camargo-Mathias, M.I. (2011). Secretory profile of metapleural gland cells of the leaf-cutting ant Acromyrmex coronatus (Formicidae: Attini). Microscopy Research Technique, 74: 76-83. doi: 10.1002/jemt.20876.

Vieira, A.S., Morgan, D.E., Drijfhout, F.P. & Camargo- Mathias, M.I (2012). Chemical Composition of Metapleural Gland Secretions of Fungus-Growing and Non-fungus growing Ants. Journal of Chemical Ecology, 38: 1289-1297. doi: 10.1007/s10886-012-0185-8.

Voegtle, H., Jones, T., Davidson, D. & Snelling, R. (2008)). E-2-Ethylhexenal, E-2-Ethyl-2-Hexenol, Mellein, and 4-Hydroxymellein in Camponotus Species from Brunei, 34: 215-219. doi: 10.1007/s10886-008-9430-6.

Zhou, Y. & Li, C., Billen, J., & He, H. (2018). Morphology and ultrastructure of Dufour’s and venom glands in the ant Camponotus japonicus Mayr (Hymenoptera: Formicidae). Micron, 104: 72-79. doi: 10.1016/j.micron.2017.10.011.




DOI: http://dx.doi.org/10.13102/sociobiology.v67i1.4277

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.504