Mechanisms of species coexistence and functional diversity of ant assemblages in forest and pasture habitats in southwestern Brazilian Amazon

Andressa Silvana Oliveira de Menezes, Fernando Augusto Schmidt


In this study, we investigated the mechanisms behind species coexistence and the relationships between functional diversity and species richness in ant assemblages in both forest and pasture habitats in the southwestern Brazilian Amazon. We addressed the specific question: What is the primary mechanism for species coexistence in forest and pasture habitats? According to the identified mechanism in each habitat, we had the following alternative expectations: (i) niche partitioning – we expected to observe a linear positive relationship between functional diversity and species richness, indicating a complementary relationship; or (ii) niche filtering – a positive constant asymptotic relation between functional diversity and species richness, indicating a functional redundancy relationship. In total, we sampled 91 ant species, 82 species in a forest habitat and 16, in a pasture habitat. In the forest habitat we identified niche filtering as the structuring mechanism of the ant assemblage, but we were unable to identify a clear mechanism in the pasture habitat. Although the relationship between functional diversity and species richness was positive in both habitats, the relationship was weaker in the forest habitat, indicating a greater functional redundancy among the ant species in this habitat. Our results reinforce the divergence of species coexistence mechanisms and ant assemblage structures in both natural and human-modified habitats in the Southwestern Brazilian Amazon.


Co-occurrence; Formicidae; Morphological Traits; Niche; Resources

Full Text:



Andersen, A.N. (1983). Species diversity and temporal distribution of ants in the semi-arid mallee region of northwestern Victoria. Australian Journal Ecology, 8: 127-137. doi: 10.1111/j.1442-9993.1983.tb01600.x

Andersen, A.N. (2008). Not enough niches: non-equilibrial processes promoting species coexistence in diverse ant communities. Austral Ecology, 33: 211-220. doi 10.1111/j.1442-9993.2007.01810.x

Araújo, E.A., Ker, J.C., Mendonça, E.S., Silva, I.R. & Oliveira, E.K. (2011) Impacto da conversão florestal – pastagem nos estoques e na dinâmica do carbono e substâncias húmicas do solo no bioma Amazônico. Acta Amazonica, 41: 103-114. doi: 10.1590/S0044-59672011000100012

Araújo, E.A. & Lani, J.L. (2012). Uso sustentável de ecossistemas de pastagens cultivadas na Amazônia Ocidental, Zoneamento ecológico- econômico. fase II, escala 1:250.000. Sema, Rio Branco, 256 p.

Arnan, X., Gaucherel, C. & Andersen, A.N. (2011). Dominance and species co-occurrence in higly diverse ant communities: a test of the interstitial hypothesis and discovery of a three- tiered competition cascade. Oecologia, 166: 783-794. doi: 10.1007/s00442-011-1919-y

Arnan, X., Cerdá, X. & Retana, J. (2014). Ant functional responses along environmental gradients. Journal Animal Ecology, 83: 1398-1408. doi: 10.1111/1365-2656.12227

Baccaro, F.B., Feitosa, R.M., Fernandez, F., Fernandes, I.O., Izzo, T.J., Souza, J.L.P. & Solar, R. (2015). Chave para as subfamílias e gêneros de formigas do Brasil. In F.B. Baccaro, R.M. Feitosa, F. Fernandez, I.O. Fernandes, T. J. Izzo, J. L. P. Souza & R. Solar (Eds.) Guia para os gêneros de formigas do Brasil (pp 25-114). Inpa, Manaus.

Bihn, J. H., Gebauer, G. & Brandl, R. (2010). Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology, 91: 782-792. doi: 10.1890/08-1276.1

Blüthgen, N. & Feldhaar, H. (2010). Food and shelter: How resources influence ant ecology. In: L. Lach, C. L. Parr & K. L. Abbott (Eds.), Ant Ecology (pp 115-136), Oxford University Press, New York.

Camarota, F., Powell, S., Melo, A.S., Priest, G., Marques, R.J. &Vasconcelos, H.L. (2016). Co-occurrence patterns in a diverse arboreal ant community are explained more by competition than habitat requirements. Ecology and Evolution, 6: 8907-8918. doi: 10.1002/ece3.2606

Cerdá, X., Arnan, X. & Retana, J. (2013). Is competition a significant hallmark of ant (Hymenoptera : Formicidae) ecology? Myrmecological News, 18: 131-147.

Cemaden (2016). Panorama hídrico no estado do Acre: diagnóstico, perspectivas e impactos potenciais relacionados à situação de seca. Cemaden, São José dos Campos.

Debastiani, V.J. & Pillar, V.D. (2012). SYNCSA – R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics, 28: 2067-2068.

Del Toro, I., Silva, R.R. & Ellison, A.M. (2015). Predicted impacts of climatic change on ant functional diversity and distributions in eastern North American forests. Diversity and Distributions, 21: 781-791. doi: 10.1111/ddi.12331

Dormann, C.F., Gruber, B. & Fruend, J. (2008). Introducing the bipartite Package: Analysing Ecological Networks. R News, 8: 8-11.

Douglas, M.E. & Endler, J.A. (1982). Quantitative matrix comparisons in ecological and evolutionary investigations. Journal Theoretical Biology, 99: 777-795. doi: 10.1016/0022-5193(82)90197-7

Fearnside, P.M. (2005). Desmatamento na Amazônia brasileira: história, índices e consequências. Megadiversidade, 1: 113-123.

Fonseca, C.R. & Ganade, G. (2001). Species functional redundancy, random extinctions and the stability of ecosystems. Journal of Ecoogy, 89: 118-125. doi: 10.1046/j.1365-2745.2001.00528.x

Fowler, D., Lessard, J.P & Sanders, N.J. (2013). Niche filtering rather than partitioning shapes the structure of temperate forest ant communities. Journal Animal Ecology, 83: 943-952. doi: 10.1111/1365-2656.12188

Gotelli, N.J. (2000). Null models analyses of species co-occurrence patterns. Ecology, 81: 2606-2621. doi: 10.1890/0012-9658(2000)081[2606:NMAOSC]2.0.CO;2

Gotelli, N.J & Entsminger, G.L. (2004). Eco sim: null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey- Bear, Jericho, VT. http:/ (acessed date: 17 Janury, 2016).

Gotelli, N.J., Hart, E.M. & Ellison, A.M. (2015). EcoSimR: Null model analysis for ecological data. R package version 0.1.0. (accessed date: 1 July, 2017).

Hölldobler, B. & Wilson, E. O. (2009). The super-organism: The beauty, elegance and strangeness of insect societies. W. W. Norton & Company, New York, 522 p

Imazon (2010). A atividade madeireira na Amazônia brasileira: produção, receita e mercados. Serviço Florestal brasileiro, Instituto do homem e meio ambiente. Imazon, Bélem.

Instituto Nacional de Metereologia – INMET (2015). Banco de dados metereológicos para ensino e pesquisa (BDMEP) – dados históricos. http:// (accessed date: 10 July, 2017).

Kaspari, M. & Weiser, M.D. (1999). The size – grain hypothesis and interspecific scaling in ants. Functional Ecology, 13: 530-538. doi: 10.1046/j.1365-2435.1999.00343.x

Kaspari, M., Yanoviak, S.P. & Dudley, R. (2008). On the biogeograph of salt limitation: a study of ant communities. Proceedings of the National Academy of Sciences of the United States of America, 105: 17848-17851. doi: 10.1073/pnas.0804528105

Martello, F., Bello, F., Morini, M.S.C., Silva, R.R., Souza-Campana, D.R., Ribeiro, M.C. & Carmona, C.P. (2018). Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Scientific Reports, 8:3266. doi: 10.1038/541598-018-20823-1

Medeiros, H., Castro, W., Salimon C., Brasil da Silva, I. & Silveira, M. (2013). Tree mortality, recruitment and growth in a bamboo dominated forest fragment in southwestern Amazonia, Brazil. Biota Neotropica, 13: 29-34. Retrived from:

Naeem, S., Thompson, L.J., Lawler, S.P., Lawton, J.H. & Woodfin, R.M. (1994). Declining biodiversity can alter the performance of ecosystems. Nature, 368: 734-737. doi: 10.1038/368734a0

Naeem, S., Lindssey, J.T., Lawler, S.P., Lawton, J.H. & Woodfin, R.M. (1995). Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Philosophical Transactions of the Royal Society B, 347: 249-262. doi: 10.1098/rstb.1995.0025

Naeem, S., Loreau, M. & Inchausti, P. (2002). Biodiversity and ecosystem functioning: the emerge of a synthetic ecological framework. In: M. Loreau, S. Naeem & P. Inchausti (Eds.), Biodiversity and ecosystem functioning: synthesis and perspectives (pp. 3-11). Oxford University York.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, H.H., Szoecs, E., & Wagner, H. (2017). Vegan: Community Ecology Package, version 2.4-3., (accessed date: 10 June, 2017).

Oliveira, A.B.S. & Schmidt, F.A. (2019). Ant assemblages of Brazil nut trees Bertholletia excelsa in forest and pasture habitats in the Southwestern Brazilian Amazon. Biodiversity and Conservation. 28:329-344.

Pianka, E.R. (1973). The structure of lizard communities. Annual of Review of Ecology and Systematics, 4: 53-74. doi: 10.1146/

R Development Core Team (2015). A language and environment for statistical computing. The R project for stastitical computing. http:/www. (accessed: 15 November, 2015).

Ribas C.R. & Schoereder J.H. (2002). Are all ant mosaics caused by competition? Oecologia, 131: 606-661. doi: 10.1007/s00442-002-0912-x

Schofield, S.F., Bishop, T.R. & Parr, C.L. (2016) Morphological characteristics of ant assemblages (Hymenoptera: Formicidae) differ among contrasting biomes. Myrmecological News, 23: 129-137.

Silva, R.R. & Brandāo, C.R.F. (2010). Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80: 107-124. doi: 10.1890/08-1298.1

Silva, R.R. & Brandão, C.R.F. (2014). Ecosystem-wide morphological structure of leaf-litter ant communities along a tropical latitudinal gradient. PLOS ONE, 9: e93049. doi: 10.1371/journal.pone.0093049

Stone, L. & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia, 85: 74-79. doi: 10.1007/BF00317345

Wiescher, P.T., Pearce-Duvet, J.M.C. & Feener, D.H. (2012). Assembling an ant community: species functional traits reflect environmental filtering. Oecologia, 160: 1063-1674. doi: 10.1007/s00442-012-2262-7

Winemiller, K.O. & Pianka, E.R. (1990). Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs, 60: 27-55. doi: 10.2307/1943025



  • There are currently no refbacks.



JCR Impact Factor (2019): 0.690

JCR 5-year Impact Factor (2019): 0.846

JCR h-index (2019): 6

Google Scholar h5-index (Insects and Arthropods journals): 12 

Scimago h-index (h number of articles published by Sociobiology that have each been cited h times): 36         

Scopus CiteScore (2017-2020): 1.30

Mean time for editorial decision (2020): 90 days

Mean time for article publication (2020): 193 days


eISSN: 2447-8067

Sociobiology is indexed in the following databases: