Natural Products can Efficiently Control the Greater Wax Moth (Lepidoptera: Pyralidae), but are Harmless to Honey Bees

Daniele Maria Telles, Gabriel Moreno Martineli, Maurice Fabian Scaloppi, Marina Pagliai Ferreira Luz, Samir Moura Kadri, Ricardo de Oliveira Orsi

Abstract


Honey bees (Apis mellifera L.) have great global socioeconomic and environmental importance. However, the greater wax moth (Galleria mellonella L.) is a pest that causes serious worldwide damage to honey bee colonies. Good beekeeping practices and physical, chemical, or natural methods can be used to control wax moths. The use of natural products is a more sustainable option because of their lower toxicity to the environment and the colony. Therefore, we evaluated the efficiency of four natural products for greater wax moth control: neem oil (Azadirachta indica), eucalyptus oil (Eucalyptus spp.), tobacco extract (Nicotiana tabacum), and malagueta pepper extract (Capsicum frutescens). We also evaluated their effects on adult bees and on the population growth of colonies. The 4th instar wax moths and adult bees were subjected to in vitro bioassays of different concentrations of the products. The results allowed us
to establish a concentration for each product that was safe for the bees and effectively controlled the moth. Then, we sprayed them on bee colonies to evaluate their effects on population growth. The neem and eucalyptus oils caused wax moth mortality at low concentrations, but did not affect colony population growth. However, they did have a toxic effect on adult bees. The tobacco and pepper extracts efficiently controlled the moth, but did not cause adult bee mortality or interfered with the population growth of the colonies. Therefore, the tobacco and pepper extracts could efficiently control the greater wax moth, without damaging honey bees.


Keywords


beekeeping; pest; natural methods.

Full Text:

PDF

References


Abreu, J. H. (1998). Práticas alternativas de controle de pragas e doenças na agricultura. Coletânea de receitas. Emopi, Campinas, SP.

Al Tikrity, W. S., Hillmann, R. C., Benton, A. W., and Clarke, W. W. (1971). New instrument for brood measurement in a honey-bee colony. Amer. Bee J. 111: 20-6.

Blacquiere, T., Smagghe, G., Van Gestel, C. A., and Mommaerts, V. (2012). Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicoly, 21: 973-992. doi 10.1007/s10646-012-0863-x.

Bollhalder, F. (1999). Trichogramma for wax moth control. American Bee Journal, 139: 711-712.

Büyükgüzel, E. (2009). Evidence of oxidative and antioxidative responses by Galleria mellonella larvae to malathion. Journal Economy Entomology, 102: 152-159. doi.org/10.1603/029.102.0122.

Chapman, R. F. (1998). The insects: structure and function. 4nd Ed. Cambridge university press. Cambridge, United Kingdom.

Charriere, J. D., and Imdorf, A. (1999). Protection of honey combs from wax moth damage. American Bee Journal, 139: 627-630.

Chaudhary, S., Kanwar, R. K., Sehgal, A., Cahill, D. M., Barrow, C. J., Sehgal, R., and Kanwar, J. R. (2017). Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Frontiers Plant Science, 8: 610. doi.org/10.3389/fpls.2017.00610.

El-Wakeil, and Nabil, E. (2013). Botanical Pesticides and Their Mode of Action. Gesunde Pflanzen, 65: 125-149. doi 10.1007/s10343-013-0308-3.

Farghaly, D. S., El Sharkawy, A. Z., Rizk, S. A., and Bader, N. F. (2017). Toxicological Studies on the Effect of Gamma Radiation and Some Plant Oils on Greater Wax Moth Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae). Journal of Nuclear Techology in Applied Science, 5: 119.

Fathi, A., Shakarami, J. (2014). Larvicidal effects of essential oils of five species of Eucalyptus against Tribolium confusum (du Val) and Tribolium castaneum (Herbest). International Journal of Agriculure and Crop Science, 7: 220.

Flesar, J., Havlik, J., Kloucek, P., Rada, V., Titera, D., Bednar, M., and Kokoska, L. (2010). In vitro growth-inhibitory effect of plant-derived extracts and compounds against Paenibacillus larvae and their acute oral toxicity to adult honey bees. Veterinary Microbiololy, 145: 129-133. doi.org/10.1016/j.vetmic.2010.03.018.

Fletcher, D. J. C. (1975). New perspectives in the causes of absconding in the African bee (Apis mellifera adansonii L.). South. African Bee Journal, 48: 6-9.

Guerra, M. D. S. (1985). Receituário caseiro: alternativas para o controle de pragas e doenças de plantas cultivadas e de seus produtos, vol.7 Embrater, Brasília, Brasil.

Iorizzi, M., Lanzotti, V., Trematerra, P., and Zollo, F. (2000). Chemical components of Capsicum annuum L. var. acuminatum and their activity on stored product insect pests, 77-86. In Proceedings-Phytochemical Society of Europe, Flavour and Fragrance Chemistry 46: Kluwer Academic Publishers, Dordrecht, London.

Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual. Review Entomology, 51: 45-66. doi.org/10.1146/annurev.ento.51.110104.151146.

Kim, S. I., Roh, J. Y., Kim, D. H., Lee, H. S., and Ahn, Y. J. (2003). Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. Journal of Stored Produtcs Research, 39: 293-303. doi.org/10.1016/s0022-474x(02)00017-6.

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., and Tscharntke, T. (2006). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences. 274: 303-313. doi.org/10.1098/rspb.2006.3721.

Kwadha, C. A., Ong’amo, G. O., Ndegwa, P. N., Raina, S. K., and Fombong, A. T. (2017). The biology and control of the greater wax moth, Galleria mellonella. Insects, 8: 61. doi.org/10.3390/insects8020061.

Leete, E., and Louden, M. C. (1968). Biosynthesis of capsaicin and dihydrocapsaicin in Capsicum frutescens. Journal of the American Chemical Society. 90: 6837-6841. doi.org/10.1021/ja01026a049.

Maliszewska, J., and Tęgowska, E. (2012). Capsaicin as an organophosphate synergist against Colorado potato beetle (Leptinotarsadecemlineata Say). Journal of Plant Protection Research. 52: 28-34. doi.org/10.2478/v10045-012-0005-8.

Moreira, C. D. O., Tavares, W. D. S., Fonseca, F. G., and Cruz, I. (2009). Mortalidade de Spodoptera frugiperda (Lepidoptera, Noctuidae) e seletividade de Eriopis connexa (Coleoptera, Coccinellidae) com óleo de nim, extrato pirolenhoso e um inseticida químico sintético. In Embrapa Milho e Sorgo-Artigo em anais de congresso. In: Congresso de extensão da UFLA, Lavras, Minas Gerais.

Pinto Junior, A. R., Carvalho, R.I.N; Pellico-Netto, S.; Weber, S.H., Souza, E.; Furiatti, R.S. (2010). Bioatividade de óleos essenciais de sassafrás e eucalipto em cascudinho. Ciência Rural. 40: 637 – 643. doi.org/10.1590/s0103-84782010005000026.

Rortais, A., Arnold, G., Dorne, J. L., More, S. J., Sperandio, G., Streissl, F., and Verdonck, F. (2017). Risk assessment of pesticides and other stressors in bees: principles, data gaps and perspectives from the European Food Safety Authority. Science of The Total Environment. 587: 524-537. doi.org/10.1016/j.scitotenv.2016.09.127.

Santos, J. D., Gadelha, J. W. R., Carvalho, M. L., Pimentel, J. V. F., and Júlio, P. V. M. R. (1988). Controle alternativo de pragas e doenças. 216: EUFC. Fortaleza, Ceará.

Sarwar, M. The killer chemicals for control of agriculture insect pests. (2015). The botanical insecticides. International Journal of Chemical and Biomolecular Science1: 123-128.

Schmutterer, H. (1990). Properties and potential of natural pesticides from the neem tree, Azadirachtaindica. Annual Review of Entomology. 35: 271-297. doi.org/10.1146/annurev.ento.35.1.271.

Senthil-Nathan, S. (2015). A review of biopesticides and their mode of action against insect pests. In Environmental sustainability. 49-63. Springer, New Delhi. doi.org/10.1007/978-81-322-2056-5_3.

Singaravelan, N.; Inbar, M., Ne'eman, G.; Distl, M., Wink, M., and Izhaki, I. (2006). The effects of nectar–nicotine on colony fitness of caged honey bees. Journal of Chemical Ecology. 32:49-59. doi.org/10.1007/s10886-006-9350-2.

Souza, A. P. D., and Vendramim, J. D. (2000). Atividade ovicida de extratos aquosos de meliáceas sobre a mosca branca Bemisia tabaci (Gennadius) biótipo B em tomateiro. Scientia Agricola. 57: 403-406. doi.org/10.1590/s0103-90162000000300005.

Souza, T. F., Fevero, S., and Conte, C. D. O. (2010). Bioatividade de óleos essenciais de espécies de eucalipto para o controle de Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae). Revista Brasileira de Agroecologia. 5: 157-164.

Taillebois, E., Cartereau, A., Jones, A. K., and Thany, S. H. (2018). Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies. Pesticide biochemistry and physiology 151: 59-66. doi.org/10.1016/j.pestbp.2018.04.007.

Vinuela, E., Adán, A., Smagghe, G., Gonzalez, M., Medina, M. P., Budia, F., and Estal, P. D. (2000). Laboratory effects of ingestion of azadirachtin by two pests (Ceratitis capitata and Spodoptera exigua) and three natural enemies (Chrysoperla carnea, Opius concolor and Podisus maculiventris). Biocontrol Science and Technology. 10: 165-177. doi.org/10.1080/09583150029305.

Zar, J., H. (1996). Bioestatistical analysis. Pretince Hall, New Jersey.

Zhong, B., Lv, C., and Qin, W. (2017). Effectiveness of the Botanical Insecticide Azadirachtin Against Tirathaba rufivena (Lepidoptera: Pyralidae). Florida Entomologist. 100: 215-218. doi.org/10.1653/024.100.0215.




DOI: http://dx.doi.org/10.13102/sociobiology.v67i1.4594

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.504