Morphometric Variability among Populations of Euglossa cordata (Hymenoptera: Apidae: Euglossini) from Different Phytophysiognomies

Lazaro Carneiro, Cândida Maria Lima Aguiar, Willian Moura Aguiar, Elon Souza Aniceto, Lorena Andrade Nunes, Vinina Silva Ferreira

Abstract


Geometric morphometrics is a tool capable of measuring the response of organisms to different environmental pressures. We tested the hypothesis that E. cordata wing morphometry, as an indicator of response to environmental pressure, it would vary depending on habitat changes, in the Atlantic Forest, Savanna and dry forest (Caatinga). For analysis of wing shape and size, 18 landmarks were digitized at the intersections of the wing veins 348 individuals. Except for the two populations sampled in Chapada Diamantina, the wing shape had significant statistical variations among the populations (p < 0.05). The wing size variation was also statistically significant among populations (p < 0.05).  Although E. cordata is a species tolerant to different environments, the observed morphometric variability may be related to population adaptations to the conditions of each phytophysiognomy.


Keywords


Solitary bee; orchid bee; morphological variation; wing shape; wing size.

Full Text:

PDF

References


Aguiar, W.M. & Gaglianone, M.C. (2008). Comunidade de abelhas Euglossina (Hymenoptera: Apidae) em remanescentes de mata Estacional Semidecidual sobre Tabuleiro no estado do Rio de Janeiro. Neotropical Entomology, 37: 118-125. doi: 10.1590/S1519-566X2008000200002

Aguiar, W.M. & Gaglianone, M.C. (2012). Euglossine bee communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil (Hymenoptera, Apidae). Revista Brasileira de Entomologia, 56: 210-219. doi: 10.1590/s0085-56262012005000018

Baranovská, E., & Knapp, M. (2018). Steep converse Bergmann’s cline in a carrion beetle: Between-and within-population variation in body size along an elevational gradient. Journal of Zoology, 304: 243-251. doi: 10.1111/jzo.12527

Campos, E.S., Araujo, T.N., Rabelo, L.S., Bastos, E.M.A. & Augusto, S.C. (2018). Does Seasonality Affect the Nest Productivity, Body Size, and Food Niche of Tetrapedia curvitarsis Friese (Apidae, Tetrapediini)? Sociobiology, 65: 576-582. doi: 10.13102/sociobiology.v65i4.3395

Cerântola, N.D.C.M., Oi, C.A., Cervini, M. & Del Lama, M.A. (2010). Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie, 42: 214-222. doi: 10.1051/apido/2010055

Coelho, C.P., Gomes, D.C., Guilherme, F.A.G. & Souza, L.F. (2017). Reproductive biology of endemic Solanum melissarum Bohs (Solanaceae) and updating of its current geographic distribution as the basis for its conservation in the Brazilian Cerrado. Brazilian Journal of Biology, 77: 809-819. doi: 10.1590/1519-6984.01516

Combey, R., Quandahor, P. & Mensah, B.A. (2018). Geometric Morphometrics Captures Possible Segregation Occurring within Subspecies Apis Mellifera Adansonii in Three Agro Ecological Zones. Annals of Biological Research, 9: 31-43

Conceição, A.A., Funch, L.S. & Pirani, J.R. (2007). Reproductive phenology, pollination and seed dispersal syndromes on sandstone outcrop vegetation in the Chapada Diamantina, northeastern Brazil: population and community analyses. Revista Brasileira de Botânica, 30: 475-485. doi: 10.1590/s0100-84042007000300012

Dellicour, S., Gerard, M., Prunier, J.G., Dewulf, A., Kuhlmann, M. & Michez, D. (2017). Distribution and predictors of wing shape and size variability in three sister species of solitary bees. PloS One, 12: e0173109. doi: 10.1371/journal.pone.0173109

Dick, C.W., Roubik, D.W., Gruber, K.F. & Bermingham, E. (2004). Long-distance gene flow and cross Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology, 13: 3775-3785. doi: 10.1111/j.1365-294x.2004.02374.x

Ferreira, V.S., Aguiar, C.M.L., Costa, M.A. & Silva, J.G. (2011). Morphometric analysis of populations of Centris aenea Lepeletier (Hymenoptera: Apidae) from Northeastern Brazil. Neotropical Entomology, 40: 97-102. doi: 10.1590/s1519-566x2011000100014

Ferreira-Caliman, M.J., Rocha-Filho, L.C.D., Freiria, G.A. & Garófalo, C.A. (2018). Floral sources used by the orchid bee Euglossa cordata (Linnaeus, 1758) (Apidae: Euglossini) in an urban area of south-eastern Brazil. Grana, 57: 471-480. doi: 10.1080/00173134.2018.1479445

Ferronato, M.C.F., Giangarelli, D.C., Mazzaro, D., Uemura, N. & Sofia, S.H. (2017). Orchid Bee (Apidae: Euglossini) Communities in Atlantic Forest Remnants and Restored Areas in Paraná State, Brazil. Neotropical Entomology, 47: 352-361. doi: 10.1007/s13744-017-0530-2

Francoy, T.M., Franco, F.F. & Roubik, D.W. (2012). Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera, Apidae, Euglossini). Apidologie, 43: 609-617. doi: 10.1007/s13592-012-0132-2

Freiria, G.A., Garófalo, C.A. & Del Lama, M.A. (2017). The primitively social behavior of Euglossa cordata (Hymenoptera, Apidae, Euglossini): a view from the perspective of kin selection theory and models of reproductive skew. Apidologie, 48: 523-532. doi: 10.1007/s13592-017-0496-4

Garófalo, C.A. (1985). Social structure of Euglossa cordata nests (Hymenoptera: Apidae: Euglossini). Entomologia Generalis, 11: 77-83. doi: 10.1007/s13592-017-0496-4

Grassi-Sella, M.L., Garófalo, C.A. & Francoy, T.M. (2018). Morphological similarity of widely separated populations of two Euglossini (Hymenoptera; Apidae) species based on geometric morphometrics of wings. Apidologie, 49: 151-161. doi: 10.1007/s13592-017-0536-0

Hammer, O., Harper, D.A.T. & Ryan, P.D. (2001). PAST-Palaeontological Statistics, ver. 1.89. Palaeontologia electronica 4(9). Retrived from: http://palaeo electronica.org/2001_1/past/past.pdf/

Klingenberg, C.P. (2011). MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353-357. doi: 10.1111/j.1755-0998.2010.02924.x

Klingenberg, C.P. (2015). Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry, 7: 843-934. doi: 10.3390/sym7020843

López-Uribe, M.M., Oi, C.A. & Del Lama, M.A. (2008). Nectar-foraging behavior of Euglossine bees (Hymenoptera: Apidae) in urban areas. Apidologie, 39: 410-418. doi: 10.1051/apido:2008023

Mendoza-Cuenca, L. & Macías-Ordóñez, R. (2005). Foraging polymorphism in Heliconius charitonia (Lepidoptera: Nymphalidae): morphological constraints and behavioural compensation. Journal of Tropical Ecology, 21: 407-415. doi: 10.1017/s0266467405002385

Mendes, M.F.M., Francoy, T.M., Nunes-Silva, P., Menezes, C. & Imperatriz-Fonseca, V.L. (2007). Intra-populational variability of Nannotrigona testaceicornis Lepeletier, 1836 (Hymenoptera, Meliponini) using relative warps analysis. Bioscience journal, 23: 147-152

Monteiro, L.R. & Reis, S. (1999). Princípios de morfometria geométrica. Ribeirão Preto: Holos Editora, 188 p

Morellato, L.P.C., Talora, D.C., Takahasi, A., Bencke, C.C., Romera, E.C. & Zipparro, V.B. (2000). Phenology of Atlantic Rain Forest Trees: A Comparative Study. Biotropica, 32: 811-823. doi: 10.1111/j.1744-7429.2000.tb00620.x

Moure, J.S., Melo, G.A.R. & Faria Jr, L.R.R. (2012). Euglossini Latreille, 1802. In Moure J.S., Urban D. & Melo G.A.R (Eds.), Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region - online version. http://www.moure.cria.org.br/catalogue/. (acessed date: 18 April, 2019)

Nemésio, A. (2009). Orchid bees (Hymenoptera: Apidae) of the Brazilian Atlantic Forest. Zootaxa, 2041: 1-242. doi: 10.11646/zootaxa.2041.1.1

Neves, C.M.L., Carvalho, C.A.L., Souza, A.V. & Junior, C.A.L. (2012). Morphometric Characterization of a Population of Tetrapedia diversipes in Restricted Areas in Bahia, Brazil (Hymenoptera: Apidae). Sociobiology, 59: 767-782.

Nunes, L.A., Da Costa, M.D.F.F., Carneiro, P.L.S., Pereira, D.G. & Waldschmidt, A.M. (2007). Divergência genética em Melipona scutellaris Latreille (Hymenoptera: Apidae) com base em caracteres morfológicos. Bioscience Journal, 23: 1-9.

Peruquetti, R.C. (2003). Variação do tamanho corporal de machos de Eulaema nigrita Lepeletier (Hymenoptera, Apidae, Euglossini). Resposta materna à flutuação de recursos? Revista Brasileira de Zoologia, 20: 207-212. doi: 10.1590/s0101-81752003000200006

Pokorny, T., Loose, D., Dyker, G., Quezada-Euán, J.J.G. & Eltz, T. (2015). Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie, 46: 224-237. doi: 10.1007/s13592-014-0317-y

Prado-Silva, A., Nunes, L.A., Oliveira Alves, R.M., Carneiro, P.L.S. & Waldschmidt, A.M. (2016). Variation of fore wing shape in Melipona mandacaia Smith, 1863 (Hymenoptera, Meliponini) along its geographic range. Journal of Hymenoptera Research, 48: 85-94. doi: 10.3897/jhr.48.6619

Quezada-Euán, J.J.G., Sheets, H.D., De Luna, E. & Eltz, T. (2015). Identification of cryptic species and morphotypes in male Euglossa: morphometric analysis of forewings (Hymenoptera: Euglossini). Apidologie, 46: 787-795. doi: 10.1007/s13592-015-0369-7

Ribeiro, M., Aguiar, W.M., Nunes, L.A. & Carneiro, L.S. (2019). Morphometric Changes in Three Species of Euglossini (Hym.: Apidae) in Response to Landscape Structure. Sociobiology, 66: 339-347. doi: 10.13102/sociobiology.v66i2.3779

Rohlf, F.J. (2015). tpsDig v2.18. Department of Ecology and Evolution: State University of New York, Stony Brook, New York

Rohlf, F.J. (2013). tpsUtil version 1.6. Department of Ecology and Evolution: State University of New York at Stony Brook

Roubik, D.W. & Hanson, P.E. (2004). Orchids bees of tropical America: biology and field guide. INBio Press: Heredia, Costa Rica.

Scheiner, S.M. (1993). Genetics and Evolution of Phenotypic Plasticity. Annual Review of Ecology and Systematics, 24: 35-68. doi: 10.1146/annurev.ecolsys.24.1.35

Schlichting, C.D. & Wund, M.A. (2014). Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution, 68: 656-672. doi: 10.1111/evo.12348

Silva, C.I., Augusto, S.C., Sofia, S.H. & Moscheta, I.S. (2007). Diversidade de abelhas em Tecomastans (L.) Kunth (Bignoniaceae): Importância na polinização e produção de frutos. Neotropical Entomology, 36: 331-341. doi: 10.1590/s1519-566x2007000300002

Soro, A., Quezada-Euán, J.J.G., Theodorou, P., Moritz, R.F. & Paxton, R.J. (2017). The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. Conservation Genetics, 18: 607-619. doi: 10.1007/s10592-016-0912-8

Zayed, A. (2009). Bee genetics and conservation. Apidologie, 40: 237-262. doi: 10.1051/apido/2009026. doi: 10.1007/s10 592-011-0221-1

Zimmermann, Y., Schorkopf, D.L.P., Moritz, R.F.A., Pemberton, R.W., Quezada-Euán, J.J.G. & Eltz, T. (2011). Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conservation Genetics, 12: 1183-1194. doi: 10.1007/s10592-011-0221-1




DOI: http://dx.doi.org/10.13102/sociobiology.v66i4.4675

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.504