Effect of Starvation on the Feeding Activity Toward Sugary Food in the Ant Tapinoma nigerrimum (Nylander, 1856)


  • Filippo Frizzi University of Florence
  • Katia Sudano University of Florence
  • Giacomo Santini University of Florence




Ants, feeding behavior, fasting period, famine, carbohydrates


In this study, we investigated the effect of starvation on the feeding behavior of the ant Tapinoma nigerrimum. In particular, we tested the response of ants that had experienced different levels of starvation, toward sucrose solutions of increasing concentration. As expected, starved ants promptly reacted to the sugary food sources with a higher rate of acceptance as compared to satiated ones. Acceptance increased both with sugar concentration and the length of the starvation period. However, a consistent fraction of the starved ants did not feed on the solutions, suggesting that starvation had different effects on different individuals, even though they all had food ad libitum before the beginning of the tests, had comparable body sizes, and were collected from the same trail. The different acceptance of sugary solutions may be, therefore, merely because ants fed on the experimental food at different times. Interestingly, in all the experimental groups, ants appeared to satiate quickly, irrespective of the solution tested and fasting duration. This would suggest that the rate of ingestion was independent of these factors, a result partially at odds with previous studies. This study is one of the few ones dealing with the behavioral response of an ant species to a famine event.


Download data is not yet available.

Author Biography

Giacomo Santini, University of Florence

Department of Biology


Abbot, P., Abe, J., Alcock, J., Alizon S., Alpedrinha, J.A., Andersson, M., et al. (2011). Inclusive fitness theory and eusociality. Nature, 471(7339) E1. doi: 10.1038/nature09831

Abril, S., Oliveras, J. & Gómez, C. (2007). Foraging activity and dietary spectrum of the Argentine ant (Hymenoptera: Formicidae) in invaded natural areas of the northeast Iberian Peninsula. Environmental Entomology, 36: 1166-1173. doi: 6-225X(2007)36[1166:FAADSO]2.0.CO;2

Arganda, S., Nicolis, S.C., Perochain, A., Péchabadens, C., Latil, G. & Dussutour, A. (2014). Collective choice in ants: The role of protein and carbohydrates ratios. Journal of Insect Physiology, 69: 19-26. doi: 10.1016/j.jinsphys.2014.04.002

Blight, O., Orgeas, J., Torre, F. & Provost, E. (2014). Competitive dominance in the organisation of Mediterranean ant communities. Ecological Entomology, 39: 595-602. doi: 10.11 11/een.12137

Blight, O., Provost, E., Renucci, M., Tirard, A. & Orgeas, J. (2010). A native ant armed to limit the spread of the Argentine ant. Biological Invasions, 12: 3785-3793. doi: 10.1007/s10530-010-9770-3

Bos, N., Pulliainen, U., Sundström, L. & Freitak, D. (2016).Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population. Royal Society Open Science, 3: 160062. doi: 10.1098/rsos.160062

Buczkowski, G. & Bennett, G.W. (2008). Aggressive interactions between the introduced Argentine ant Linepithema humile and the native odorous house ant Tapinoma sessile. Biological Invasions, 10: 1001-1011. doi: 10.1007/s10530-007-9179-9

Cassill, D.L. & Tschinkel, W.R. (1999). Information flow during social feeding in ant societies. In C. Detrain, J.L. Deneubourg, J.M. Pasteels (Eds.), Information processing in social insects (pp. 69-81). Basel:Birkhäuser.

Cerda, X., Retana, J. & Cros, S. (1997). Thermal disruption of transitive hierarchies in Mediterranean ant communities.Journal of Animal Ecology, 3: 363-374. doi: 10.2307/5982

Couvillon, M.J., Jandt, J.M., Bonds, J., Helm, B.R. & Dornhaus, A. (2011). Percent lipid is associated with body size but not task in the bumble bee Bombus impatiens. Journal of Comparative Physiology A, 197: 1097. doi: 10.1007/s00359-011-0670-5

Dekoninck, W., Parmentier, T. & Seifert, B. (2015). First records of a supercolonial species of the Tapinoma nigerrimum complex in Belgium (Hymenoptera: Formicidae). Bulletin de La Société Royale Belge d’Entomologie, 151: 206-209.

Dussutour, A., Poissonnier, L.A., Buhl, J. & Simpson, S.J. (2016). Resistance to nutritional stress in ants: when being fat is advantageous. Journal of Experimental Biology, 219: 824-833. doi: 10.1242/jeb.136234

Falibene, A., de Figueiredo Gontijo, A. & Josens, R. (2009).Sucking pump activity in feeding behaviour regulation in carpenter ants. Journal of Insect Physiology, 55: 518-524. doi: 10.1016/j.jinsphys.2009.01.015

Frizzi, F., Bartalesi, V. & Santini, G. (2017). Combined effects of temperature and interspecific competition on the mortality of the invasive garden ant Lasius neglectus: A laboratory study. Journal of Thermal Biology, 65: 76-81. doi: 10.1016/j.jtherbio.2017.02.007

Frizzi, F., Rispoli, A., Chelazzi, G. & Santini, G. (2016).Effect of water and resource availability on ant feeding preferences: a field experiment on the Mediterranean ant Crematogaster scutellaris. Insectes Sociaux, 63: 565-574. doi: 10.1007/s00040-016-0500-4

Frizzi, F., Talone, F. & Santini, G. (2018). Modulation of trail laying in the ant Lasius neglectus (Hymenoptera: Formicidae) and its role in the collective selection of a food source. Ethology, 124: 870-880. doi: 10.1111/eth.12821

Grover, C.D., Kay, A.D., Monson, J.A., Marsh, T.C. & Holway, D.A. (2007). Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society B: Biological Sciences, 274: 2951-2957. doi: 10.1098/rspb.2007.1065

Heinze, J., Foitzik, S., Fischer, B., Wanke, T. & Kipyatkov, V.E. (2003). The significance of latitudinal variation in body size in a holarctic ant Leptothorax acervorum. Ecography, 26: 349-355. doi: 10.1034/j.1600-0587.2003.03478.x

Hothorn,T., Bretz, F. & Westfall, P. (2008). Simultaneous Inference in General Parametric Models. Biometrical Journal, 50: 346-363.doi: 10.1002/bimj.200810425

Josens, R., Lopez, M.A., Jofré, N. & Giurfa, M. (2018).Individual size as determinant of sugar responsiveness in ants.Behavioral Ecology and Sociobiology, 72: 162. doi: 10.1007/s00265-018-2581-8

Liu, C., Kuang, B.Q., Yang, J.L., Song, Y.P. & Xu, Y.J. (2011).Effect of Starvation on the Contact-Free Aggressive Behavior and Predation Activity of Solenopsis invicta (Hymenoptera: Formicidae). Sociobiology, 57: 461-470.

Mailleux, A.C., Buffin, A., Detrain, C., Deneubourg, J.L. (2011a). Recruitment in starved nests: the role of direct and indirect interactions between scouts and nestmates in the ant Lasius niger. Insectes Sociaux, 58: 559. doi: 10.1007/s00040-011-0177-7

Mailleux, A.C., Sempo, G., Depickere, S., Detrain, C. & Deneubourg, J.L. (2011b). How does starvation affect spatial organization within nests in Lasius niger? Insectes Sociaux, 58: 219-225. doi: 10.1007/s00040-010-0139-5

Mailleux, A.C., Devigne, C., Deneubourg, J.L. & Detrain, C. (2010). Impact of starvation on Lasius niger’exploration.Ethology, 116: 248-256. doi: 10.1111/j.1439-0310.2009.01736.x

Mailleux, A.C., Detrain, C. & Deneubourg, J.L. (2006). Star-vation drives a threshold triggering communication. Journal of Experimental Biology, 209: 4224-4229. doi: 10.1242/jeb.02461

Mansour, R., Suma, P., Mazzeo, G., La Pergola, A., Pappalardo, V., Grissa Lebdi, K. & Russo, A. (2012). Interactions between the ant Tapinoma nigerrimum (Hymenoptera: Formicidae) and the main natural enemies of the vine and citrus mealybugs (Hemiptera: Pseudococcidae). Biocontrol Science and Technology, 22: 527-537. doi: 10.1080/09583157.2012.665832

Mazerolle, M.J. (2017). AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c) R package version 21-1. Retrieved from: https://cranr-projectorg/package= AICcmodavg

McGrannachan, C.M. & Lester, P.J. (2013).Temperature and starvation effects on food exploitation by Argentine ants and native ants in New Zealand. Journal of Applied Entomology, 137:550-559.doi: 10.1111/jen.12032

Nguyen, A.D., DeNovellis, K., Resendez, S., Pustilnik, J.D., Gotelli, N.J., Parker, J.D. & Cahan, S.H. (2017). Effects of desiccation and starvation on thermal tolerance and the heat-shock response in forest ants. Journal of Comparative Physiology, B 187: 1107-1116. doi: 10.1007/s00360-017-1101-x

Paul, J. & Roces, F. (2003). Fluid intake rates in ants correlate with their feeding habits. Journal of Insect Physiology, 49: 347-357. doi: 10.1016/S0022-1910(03)00019-2

R Core Team (2018). R: A language and environment for statisticalcomputing R Foundation for Statistical Computing.Vienna, Austria. Retrieved from: http://wwwR-projectorg/

Seifert, B., D’Eustacchio, D., Kaufmann, B., Centorame, M. & Modica, M. (2017). Four species within the supercolonial ants of the Tapinoma nigerrimum complex revealed by integrative taxonomy (Hymenoptera: Formicidae). Myrmecological News, 24: 123-144.

Sola, F.J., Josens, R. (2016). Feeding behavior and social interactions of the Argentine ant Linepithema humile change with sucrose concentration. Bulletin of Entomological Research, 106: 522-529. doi: 10.1017/S0007485316000201

Stephens, D.W. & Krebs, J.R. (1986). Foraging theory. Princeton: Princeton University Press, 262 p

Tripet, F. & Nonacs, P. (2004). Foraging for work and age-based polyethism: the roles of age and previous experience on task choice in ants. Ethology, 110: 863-877. doi: 10.1111/j.1439-0310.2004.01023.x

Wittman, S.E., O’Dowd, D.J. & Green, P.T. (2018). Carbohydrate supply drives colony size aggression and impacts of an invasive ant. Ecosphere, 9: e02403. doi: 10.1002/ecs2.2403




How to Cite

Frizzi, F., Sudano, K., & Santini, G. (2019). Effect of Starvation on the Feeding Activity Toward Sugary Food in the Ant Tapinoma nigerrimum (Nylander, 1856). Sociobiology, 66(4), 560–567. https://doi.org/10.13102/sociobiology.v66i4.4679



Research Article - Ants