I Can See You: Temporal Variation in Ant Aggressiveness Towards Herbivores under Continuous Provision of High- or Low-quality Food Sources

João Carlos de Castro Pena, Pedro Luna, Felipe Aoki-Gonçalves, María Fernanda Chávez Jacobo, TAMARA MARTÍNEZ PATIÑO, KASSANDRA SÁNCHEZ MORALES, MIGUELINA VIVER VÁZQUEZ, JUAN HECTOR GARCÍA-CHÁVEZ, WESLEY DÁTTILO

Abstract


To reduce herbivory, plants bearing extrafloral nectaries interact with ants and attract them by providing food. As plant bodyguards, ants respond to the resource provision and, using their antennae, detect chemical messages from the host plants that help them to locate herbivores. Ants can also use their vision to explore the environment; however, information is lacking on how interactions between visual signs and the availability of extrafloral nectar affect ant aggressiveness near resources. We addressed the following question in this study: does the ants’ ability to visualize potential herbivores enhance their aggression under a constant provision of a high-quality food source? Using an experimental approach within the semiarid intertropical region of Tehuacan-Cuicatlán (Mexico), we manipulated the availability of food sources by constantly offering artificial nectaries on the shrub Prosopis laevigata (Fabaceae). Over two time periods (day and night), we tested how the presence of a high-quality food source affected ant aggressiveness to herbivores. Therefore, we offered dummy caterpillars and counted the number of marks left by enemy attacks. Overall the attack rate was extremely high: 84.25% of the dummy caterpillars were injured. Ants were responsible for 86.22% of the marks left by enemies, and their aggression increased during the day, especially towards caterpillars in trees with high-quality food sources. During the night, ants probably rely mostly on their antennae to detect potential herbivores; therefore, their ability to detect dummy caterpillars was greater during the day. We show that, besides nectar quality and availability, visualizing herbivores may enhance ant aggressiveness. 


Keywords


ant-plant-herbivore interactions; artificial nectaries; semiarid environments; dummy caterpillars; multitrophic interactions; enemy free space.

Full Text:

PDF

References


Anjos, D.V., Caserio, B., Rezende, F.T., Ribeiro, S.P., Del-Claro, K., Fagundes, R. (2017). Extrafloral-nectaries and interspecific aggressiveness regulate day/night turnover of ant species foraging for nectar on Bionia coriacea. Austral Ecology 42: 317–328. doi: 10.1111/aec.12446

Buehlmann, C., Fernandes, A.S.D., Graham, P. (2018). The interaction of path integration and terrestrial visual cues in navigating desert ants: what can we learn from path characteristics? Journal of Experimental Biology 221: jeb167304. doi: 10.1242/jeb.167304

Calixto, E.S., Lange, D., Del-Claro, K. (2015). Foliar anti-herbivore defences in Qualea multiflora Mart. (Vochysiaceae): Changing strategy according to leaf development. Flora - Morphology, Distribution, Functional Ecology of Plants 212: 19–23. doi: 10.1016/j.flora.2015.02.001

Campos, R.I., Camacho, G.P. (2014). Ant–plant interactions: the importance of extrafloral nectaries versus hemipteran honeydew on plant defence against herbivores. Arthropod- Plant Interactions 8: 507–512. doi: 10.1007/s11829-014-9338-8

Dáttilo, W., Aguirre, A., Flores-Flores, R.V., Ahuatzin Flores, D., Corro Méndez, E.J. (2017) Plantas, hormigas y herbívoros interactúan en un ambiente semiárido en el centro de México, ¿cómo lo hacen? CONABIO. Biodiversitas 132: 12–16.

Dáttilo, W., Aguirre, A., Flores-Flores, R.V., Fagundes, R., Lange, D., García-Chávez, J., Del-Claro, K., Rico-Gray, V. (2015). Secretory activity of extrafloral nectaries shaping multitrophic ant-plant-herbivore interactions in an arid environment. Journal of Arid Environments 114: 104–109. doi: 10.1016/j.jaridenv.2014.12.001

Dáttilo, W., Fagundes, R., Gurka, C.A.Q., Silva, M.S.A., Vieira, M.C.L., Izzo, T.J., Díaz-Castelazo, C., Del-Claro, K., Rico-Gray, V. (2014). Individual-based ant-plant networks: Diurnal-nocturnal structure and species-area relationship. PLoS One 9. doi: 10.1371/journal.pone.0099838

Del-Claro, K., Rico-Gray, V., Torezan-Silingardi, H.M., Alves-Silva, E., Fagundes, R., Lange, D., Dáttilo, W., Vilela, A.A., Aguirre, A., Rodriguez-Morales, D. (2016). Loss and gains in ant–plant interactions mediated by extrafloral nectar: fidelity, cheats, and lies. Insectes Sociaux 63: 207–221. doi: 10.1007/s00040-016-0466-2

Fagundes, R., Dáttilo, W., Ribeiro, S.P., Rico-Gray, V., Jordano, P., Del-Claro, K. (2017). Differences among ant species in plant protection are related to production of extrafloral nectar and degree of leaf herbivory. Biological Journal of the Linnean Society 122: 71–83. doi: 10.1093/biolinnean/blx059

Falcão, J.C.F., Dáttilo, W., Izzo, T.J. (2014). Temporal variation in extrafloral nectar secretion in different ontogenic stages of the fruits of Alibertia verrucosa S. Moore (Rubiaceae) in a Neotropical savanna. Journal of Plant Interactions 9: 137–142. doi: 10.1080/17429145.2013.782513

Fernandes, A.S.D., Buckley, C.L., Niven, J.E. (2018). Visual associative learning in wood ants. Journal of Experimental Biology 221: jeb173260. doi: 10.1242/jeb.173260

Fitzpatrick, G., Lanan, M.C., Bronstein, J.L. (2014). Thermal tolerance affects mutualist attendance in an ant-plant protection mutualism. Oecologia 176: 129–138. doi: 10.1007/s00442-014-3005-8

Flores-Flores, R.V., Aguirre, A., Anjos, D. V., Neves, F.S., Campos, R.I., Dáttilo, W. (2018). Food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions in an arid environment. Acta Oecologica 87: 13–19. doi: 10.1016/j.actao.2018.02.004

Freas, C.A., Wystrach, A., Narendra, A., Cheng, K. (2018). The view from the trees: Nocturnal bull ants, Myrmecia midas, use the surrounding panorama while descending from trees. Frontiers in Psychology 9: 1–15. doi: 10.3389/fpsyg.2018.00016

Frey, D., Vega, K., Zellweger, F., Ghazoul, J., Hansen, D., Moretti, M. (2018). Predation risk shaped by habitat and landscape complexity in urban environments. Journal of Applied Ecology 55: 2343–2353. doi: 10.1111/1365-2664.13189

Gottsberger, G., Schrauwen, J., Linskens, H.F. (1984). Aminoácidos y azúcares en el néctar, y su significado evolutivo putativo. Plant Systematics and Evolution 145: 55–77.

Graham, P., Cheng, K. (2009). Ants use the panoramic skyline as a visual cue during navigation. Current Biology 19: R935–R937. doi: 10.1016/j.cub.2009.08.015

Greiner, B., Narendra, A., Reid, S.F., Dacke, M., Ribi, W.A., Zeil, J. (2007). Eye structure correlates with distinct foraging - bout timing in primitive ants. Current Biology 17: 879–880. doi: 10.1016/j.cub.2007.08.015

Grover, C.D., Kay, A.D., Monson, J.A., Marsh, T.C., Holway, D.A. (2007). Linking nutrition and behavioural dominance: Carbohydrate scarcity limits aggression and activity in Argentine ants. Proceedings of the Royal Society B Biological Sciences 274: 2951–2957. doi: 0.1098/rspb.2007.1065

Heil, M. (2015). Extrafloral Nectar at the Plant-Insect Interface: A Spotlight on Chemical Ecology, Phenotypic Plasticity, and Food Webs. Annual Reviews Entomology 60: 213–232. doi: 10.1146/annurev-ento-010814-020753

Herrera, C.M. & Pellmyr, O. (2002). Plant-Animal Interactions: An evolutionary approach. Oxford: Wiley-Blackwell.

Hossie, T.J., Sherratt, T.N. (2012). Eyespots interact with body colour to protect caterpillar-like prey from avian predators. Animal Behaviour 84: 167–173. doi: 10.1016/j.anbehav.2012.04.027

Knaden, M., Graham, P. (2015). The Sensory Ecology of Ant Navigation: From Natural Environments to Neural Mechanisms. Annual Reviews Entomology 61: 63–76. doi: 10.1146/annurev-ento-010715-023703

Koptur, S. (1984). Experimental evidence for defence of Inga (Mimosoideae) saplings by ants. Ecology 65: 1787–1793.

Land, M.F. (1997). Visual acuity in insects. Annual Reviews Entomology 42: 147-77. doi: 10.1146/annurev.ento.42.1.147

Lange, D., Calixto, E.S., Del-Claro, K. (2017). Variation in extrafloral nectary productivity influences the ant foraging. PLoS One 12: 1–13. doi: 10.1371/journal.pone.0169492

Leles, B., Xiao, X., Pasion, B.O., Nakamura, A., Tomlinson, K.W. (2017). Does plant diversity increase top-down control of herbivorous insects in tropical forest? Oikos 126: 1142–1149. doi: 10.1111/oik.03562

Low, P.A., Sam, K., McArthur, C., Posa, M.R.C., Hochuli, D.F. (2014). Determining predator identity from attack marks left in model caterpillars: Guidelines for best practice. Entomologia Experimentalis et Applicata 152: 120–126. doi: 10.1111/eea.12207

Luna, P., Castro-Leal, L., Contreras-Cerón, R., Castillo-Meza, A.L. (2016). Formicids activity on Ferocactus latispinus (Cactaceae) in a semiarid environment of central México. Entomológica Mexicana 3: 530–536.

Moreno, C., Ferro, V.G. (2012). Intensity of attack on artificial caterpillars in different Cerrado vegetation types, Brazil. Bioikos 26: 71–75.

Nelson, A.S., Carvajal Acosta, N., Mooney, K.A. (2019). Plant chemical mediation of ant behavior. Current Opinions in Insect Science 32: 98–103. doi: 10.1016/j.cois.2018.12.003

Ness, J.H. (2003). Catalpa bignonioides alters extrafloral nectar production after herbivory and attracts ant bodyguards. Oecologia 134: 210–218. doi: 10.1007/s00442-002-1110-6

Passos, F.C.S., Leal, L.C. (2019). Protein matters: ants remove herbivores more frequently from extrafloral nectary-bearing plants when habitats are protein poor. Biological Journal of the Linnean Society 127: 407–416. doi: 10.1093/biolinnean/blz033

Pringle, E.G., Akçay, E., Raab, T.K., Dirzo, R., Gordon, D.M. (2013). Water stress strengthens mutualism among ants, trees, and scale insects. PLoS Biol 11: e1001705. doi: 10.1371/journal.pbio.1001705

RCoreTeam, (2018). R: A language and environment for statistical computing. R A Lang. Environ. Stat. Comput.

Rico-Gray, V. (1989). The importance of floral and circum-floral nectar to ants inhabiting dry tropical lowlands. Biological Journal of the Linnean Society 38: 173–181. doi: 10.1111/j.1095-8312.1989.tb01572.x

Rico-Gray, V., Oliveira, P.S. (2007). The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press.

Rico-Gray, V., Palacios-Rios, M., Garcia-Franco, J.G., Mackay, W.P. (2006). Richness and seasonal variation of ant-plant associations mediated by plant-derived food resources in the semiarid Zapotitlán valley, México. The American Midland Naturalist 140: 21–26. doi: 10.1674/0003-0031(1998)140[0021:rasvoa]2.0.co;2

Roslin, T., Hardwick, B., Novotny, V., Petry, W.K., Andrew, N.R., Asmus, A., Barrio, I.C., Basset, Y., Boesing, A.L., Bonebrake, T.C., Cameron, E.K., Dáttilo, W., Donoso, D.A., Drozd, P., Gray, C.L., Hik, D.S., Hill, S.J., Hopkins, T., Huang, S., Koane, B., Laird-Hopkins, B., Laukkanen, L., Lewis, O.T., Milne, S., Mwesige, I., Nakamura, A., Nell, C.S., Nichols, E., Prokurat, A., Sam, K., Schmidt, N.M., Slade, A., Slade, V., Suchanková, A., Teder, T., van Nouhuys, S., Vandvik, V., Weissflog, A., Zhukovich, V., Slade, E.M. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science 356:742–744. doi: 10.1126/science.aaj1631

Strauss, S.Y. & Zangerl, A.R. (2002). Plant-insect interactions in terrestrial ecosystems. In: Herrera, C.M. & Pellmyr, O. (Eds.), Plant-animal interactions: an evolutionary approach (pp. 77–106). Hoboken: Blackwell Publishing.

Yamawo, A., Hada, Y., Suzuki, N. (2012). Variations in direct and indirect defences against herbivores on young plants of Mallotus japonicus in relation to soil moisture conditions. Journal of Plant Research 125: 71–76. doi: 10.1007/s10265-011-0407-0

Yilmaz, A., Aksoy, V., Camlitepe, Y., Giurfa, M. (2014). Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Frontiers in Behavioral Neuroscience 8: 1–9. doi: 10.3389/fnbeh.2014.00205




DOI: http://dx.doi.org/10.13102/sociobiology.v67i1.4727

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.504