Ruderal Plants Providing Bees Diversity on Rural Properties

Paula Carolina Montagnana, Maria José de Oliveira Campos


Many  are  the  anthropogenic  drivers  of  pollinator  decline,  but  the  loss  of  suitable  habitats, among other effects caused by agricultural intensification, deserves special attention.  Reduction  in  the  availability  of  floral  resources  negatively  affects  bee communities, compromising bee species composition, foraging behavior, corporal size, and fitness. Our study aims to understand whether the presence of herbaceous plants, acting as foraging sites, next to crops contributes to bee species richness in smallholder rural properties. Bee sampling was performed on smallholder rural properties in the municipality of Guapiara, southern São Paulo state. Individuals who visited the flowers of ruderal plants and crops were collected, using an entomological net, for ten months. A total of 61 bee species were identified, with the highest species richness being sampled in ruderal plant flowers in the three properties studied. Only in one property, ruderal plants hosted a more diverse bee assemblage (Shannon-Weiner and taxonomic diversity indices), but species composition differed from that sampled in crop plants (Jaccard index) in all properties. Thirty-two species were sampled exclusively in ruderal plants, versus 9 only in crops and 20 species in both types of plants. Pollen analysis showed that of the 22 species of bees that were sampled only on flowers of ruderal plants, 9 species carried pollen of tomato and one species of bee carried pollen of kabocha squash. Ruderal plants can provide an alternative food resource for pollinators, enabling these insects to remain in or be attracted to crop areas, where, in addition to visiting such plants, they also visit the cultivated plant flowers. Allowing coexistence between crops and ruderal plants, provided that the issues of plant health are observed, is a simple and low-cost measure for farmers and will provide both economic and environmental benefits.


plant diversity; smallholder rural properties; crops; Atlantic Forest

Full Text:



Abbas, M., Klein, A. M., Ebeling, A. et al. (2014). Plant diversity effects on pollination and herbivorous insects can be linked to plant stoichiometry. Basic and Applied Ecology 15(2): 169-178. doi: 10.1016/j.baae.2014.02.001

Albrecht, M., Duelli, P., Müller, C., Kleijn, D. & Schmid, B. (2007). The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology 44: 813-822. doi: 10.1111/j.1365-2664.2007.01306.x

Alomar, D., González-Estévez, M. A., Traveset, A. et al. (2018). The intertwined effects of natural vegetation, local flower community, and pollinator diversity on the production of almond trees. Agriculture, Ecosystems and Environment 264: 34–43. doi: 10.1016/j.agee.2018.05.004

Biesmeijer, J. C., Roberts, S. P. M., Reemer, M., Ohlemüller, R., Edwards, M., Peeters, T., Schaffers, A. P., Potts, S. G., Kleukers, R., Thomas, C. D., Settele, J. & Kunin, W. E. (2006). Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 313: 351-354. doi: 10.1126/science.1127863

Campbell, A. J., Carvalheiro, L. G., Maués, M. M., Jaffé, R., Giannini, T. C., Freitas, M. A. B., Coelho, B. W. T. & Menezes, C. (2018). Anthropogenic disturbance of tropical forests threatens pollination services to açaí palm in the Amazon river delta. Journal of Applied Ecology 55: 1725-1736. doi: 10.1111/1365-2664.13086

Carreck, N. L. & Williams, I. H. (2002). Food for insects pollinators on farmland: insect visits to flowers of annual seed mixtures. Journal of Insect Conservation 6: 13-23. doi: 10.1023/A:101576492

Carvalheiro, L. G., Veldtman, R., Shenkute, A. G. et al. (2011). Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters 14: 251-259. doi: 10.1111/j.1461-0248.2010.01579.x

CEPAGRI – Centro de Pesquisas Meteorológicas e Climáticas Aplicadas à Agricultura. (2014). (accessed date: 10 January, 2014).

Chateil, C. & Porcher, E. (2015). Landscape features are a better correlate of wild plant pollination than agricultural practices in an intensive cropping system. Agriculture, Ecosystems and Environment 201: 51–57. doi: 10.1016/j.agee.2014.12.008

Fundação Florestal (2019). (accessed date: 15 March, 2019).

Garibaldi, L.A., Steffan-Dewenter, I., Winfree, R. et al. (2013). Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 339: 1608-1611. doi: 10.1126/science.1230200

Ghazoul, J. (2006). Floral diversity and the facilitation of pollination. Journal of Ecology 94: 295-304. doi: 10.1111/j.1365-2745.2006.01098.x

Grab, H., Branstetter, M. G., Amon, N. et al. (2019). Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363: 282-284. doi: 10.1126/science.aat6016

Halinski, R., dos Santos, C.F., Kaehler et al. (2018). Influence of Wild Bee Diversity on Canola Crop Yields. Sociobiology, 65(4): 751-759. doi: 10.13102/sociobiology.v65i4.3467

Hammer, O., Harper, D.A.T. & Ryan, P.D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9

Herrmann, J.D., Beye, H., Broise1, C. et al. (2019). Positive effects of the pollinators Osmia cornuta (Megachilidae) and Lucilia sericata (Calliphoridae) on strawberry quality. Arthropod-Plant Interactions, 13: 71–77. doi: 10.1007/s11829-018-9636-7

Hopwood, J. L. (2008). The contribution od roadside grassland restorations to native bee conservation. Biological Conservation 141: 2632-2640. doi: 10.1016/j.biocon.2008.07.026

Kaluza, B. F., Wallace, H. M., Heard, T. A. et al. (2018). Social bees are fitter in more biodiverse environments. Scientific Reports 8: 12353. doi:10.1038/s41598-018-30126-0

Klein, A.M., Boreux, V., Fornoff, F. et al. (2018). Relevance of wild and managed bees for human well-being. Current Opinion in Insect Science, 26: 82–88. doi:10.1016/j.cois.2018.02.011

Knapp, J. L., Shaw, R. F. & Osborne, J. L. (2019). Pollinator visitation to mass-flowering courgette and co-flowering wild flowers: Implications for pollination and bee conservation on farms. Basic and Applied Ecology 34: 85-94. doi: 10.1016/j.baae.2018.09.003

Kovács-Hostyànszki, A., Körösi, A., Orci, K. M. et al. (2011). Set-aside promotes insect and plant diversity in a Central European country. Agriculture, Ecosystems and Environment 141: 296-301. doi: 10.1016/j.agee.2011.03.004

Kuussaari, M., Hyvönen, T. & Härmä, O. (2011). Pollinator insects benefit from rotational fallows. Agriculture, Ecosystems and Environment 143: 28-36. doi: 10.1016/j.agee.2011.03.006

London-Shafir, I., Shafir, S. & Eisikowitch, D. (2003). Amygdalin in almond nectar and pollen – facts and possible roles. Plant Systematics Evolution 238: 87–95. doi:10.1007/s00606-003-0272-y

Lundin, O., Ward, K. L., Artz, D. R. et al. (2017). Wildflower plantings do not compete with neighboring almond orchards for pollinator visits. Environmental Entomology 46(3): 559–564. doi: 10.1093/ee/nvx052

MacInnis, G. & Forrest, J.R.K. (2019). Pollination by wild bees yields larger strawberries than pollination by honey bees. Journal of Applied Ecology, 56: 824-832. doi: 10.1111/1365-2664.13344

Magurran, A. E. (2004). Measuring Biological Diversity. Oxford: Blackwell Science Ltd., 215 p

Mallinger, R. E., Bradshaw, J., Varenhorst, A. J. & Prasifka, J. R. (2019). Native solitary bees provide economically significant pollination services to confection sunflowers (Helianthus annuus L.) (Asterales: Asteraceae) grown across the northern great plains. Journal of Economic Entomology 112(1): 40–48. doi: 10.1093/jee/toy322

Mao, W., Schuler, M. A. & Berenbaum, M. R. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences of the United States of America 110(2): 8842-8846. doi: 10.1073/pnas.1525259113

Moerman, R., Vanderplanck, M., Roger, N. et al. (2015). Growth rate of bumblebee larvae is related to pollen amino acids. Journal of Economic Entomology 1-6. doi: 10.1093/jee/tov279

Nicholls, C. I. & Altieri, M. A. (2013). Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agronomy for Sustainable Development 33: 257 274. doi: 10.1007/s13593-012-0092-y

Nicholson, C.C. & Ricketts, T.H. (2019). Wild pollinators improve production, uniformity, and timing of blueberry crops. Agriculture, Ecosystems and Environment, 272: 29–37. doi: 10.1016/j.agee.2018.10.018

Norris, S. L., Blackshaw, R. P., Critchley, C. N. R. et al. (2018). Intercropping flowering plants in maize systems increases pollinator diversity. Agricultural and Forest Entomology 20: 246–254. doi: 10.1111/afe.12251

Perrot, T., Gaba, S., Roncoroni, M. et al. (2018). Bees increase oilseed rape yield under real field conditions. Agriculture, Ecosystems and Environment, 266: 39–48. doi: 10.1016/j.agee.2018.07.020

Peterson, J. H. & Roitberg, B. D. (2006). Impact of resource levels on sex ratio and resource allocation in the solitary bee, Megachile rotundata. Environmental Entomology 35(5): 1404-1410. doi: 10.1093/ee/35.5.1404

Potts, S. G., Vulliamy, B., Dafni, A. et al. (2003). Linking bees and flowers: How do floral communities structure pollinator communities? Ecology 84(10): 2628-2642. doi: 10.1890/02-0136

Potts, S.G., Biesmeijer, J.C., Kremen, C. et al. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25: 345-353. doi:10.1016/j.tree.2010.01.007

Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T. et al. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540: 220-229. doi: 10.1038/nature20588

Renauld, M., Hutchinson, A., Loeb, G. et al. (2016). Landscape Simplification Constrains Adult Size in a Native Ground-Nesting Bee. PLoS ONE 11(3): e0150946. doi:10.1371/journal.pone.0150946

Rollin, O., Pérez-Méndez, N., Bretagnolle, V. et al. (2019). Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming systems. Agriculture, Ecosystems and Environment 275: 73–80. doi: 10.1016/j.agee.2019.01.012

Torné-Noguera, A., Rodrigo, A., Arnan, X. et al. (2014). Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. PLoS ONE 9(5): 1-10. doi: 10.1371/journal.pone.0097255

Tscharntke, T., Batáry, P. & Dormann, C. F. (2011). Set-aside management: How do succession, sowing patters and landscape context affect biodiversity? Agriculture, Ecosystems and Environment 143: 37-44. doi: 10.1016/j.agee.2010.11.025

Vanderplanck, M., Moerman, R., Rasmont, P. et al. (2014). How does pollen chemistry impact development and feeding behavior of polylectic bees? PLoS ONE 9: 1-9. doi: 10.1371/journal.pone.0086209

Venturini, E. M., Drummond, F. A., Hoshide, A. K. et al. (2017). Pollination reservoirs for wild bee habitat enhancement in cropping systems: a review. Agroecology and Sustainable Food Systems 41(2): 101-142. doi: 10.1080/21683565.2016.1258377



  • There are currently no refbacks.



JCR Impact Factor (2019): 0.690

JCR 5-year Impact Factor (2019): 0.846

Google Scholar h5-index (Insects and Arthropods journals): 12 

Scimago h-index (whole journal circulation period): 37         

Scopus CiteScore (2016-2019): 0.90


Sociobiology is indexed in the following databases: