Distribution of epigeic and hypogeic ants (Hymenoptera: Formicidae) in ombrophilous forests in the Brazilian Amazon

Marcos Timóteo Torres, Jorge Luiz Pereira Souza, Fabricio Beggiato Baccaro


In the Amazon basin, ants are often associated with environmental or edaphic factors. However, these associations may vary between the epigeic and hypogeic strata. Here, we investigated differences in richness and composition of epigeic and hypogeic ant assemblages along an environmental gradient in the Brazilian Amazon. The four studied sites cover different topographic and soil characteristics. We sampled 25 plots of 250 m2 using 10 samples of epigeic pitfalls and 10 samples of hypogeic pitfalls installed at two depths (10 and 30 cm). The pitfalls remained in the fi eld for 48 hours. In the same plots, soil clay content and terrain altitude were also measured. We collected 219 species or morphospecies, of which 14 were exclusively hypogeics. We found higher local richness in the epigeic compared to hypogeic assemblages. We also found an interaction between clay content and strata for ant species composition. Overall, the species turnover was related to clay content, but the eff ect depended on the strata, with hypogeic fauna being more heterogeneous, compared with epigeic fauna. Despite the relationship between clay content and ant´s assemblage’s composition, we did not find strong environment predictors for both strata, which suggests that other factors may structure ant assemblages in these sites. This reinforces the need for studies to defi ne which environmental gradiente determines the distribution of Amazonian epigeic and hypogeic ants.


Amazonia; Community ecology; Environment gradient; Stratification; Subterranean

Full Text:



Alonso, L.E. e Agosti, D. 2000. Biodiversity studies, monitoring, and ants: An overview. In D. Agosti, J. D. Majer, L. E. Alonso e T. R. Schultz (Eds.), Ants: standard methods for measuring and monitoring biodiversity (pp. 1- 8). Washington, D. C.: Smithsonian Institution Press.

Andersen, A.N. & Majer, J.D. (2004). Ants show the way down under: invertebrates as bioindicators in land management. Frontiers in Ecology and the Environment, 2(6): 291–298. doi: 10.1890/1540-9295(2004)002[0292:ASTWDU]2.0.CO;2

Andersen, A. N. & Brault, A. (2010). Exploring a new biodiversity frontier: subterranean ants in northern Australia. Biodiversity and Conservation, 19(9): 2741–2750. doi: 10.1007/s10531-010-9874-1

Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26: 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x.

Armbrecht, I., Perfecto I. & Vandermeer. J. (2004). Enigmatic biodiversity correlations: ant diversity responds to diverse resources. Science, 304 (5668): 284–286. doi: 10.1126/science.1094981.

Austin, M. P. (1985). Continuum concept, ordination methods, and niche theory. Annual Review of Ecology and Systematics, 16: 39-61

Baccaro, F.B., Feitosa, R.M., Fernandez, F., Fernandes, R.I.O., Izzo, T.J., Souza, J.L.P. & Solar, R. (2015). Guia para os gêneros de formigas do Brasil. Manaus: Editora INPA, 388p. doi:10.5281/zenodo.32912

Baccaro, F.B., Souza, J.L.P., Franklin, E., Landeiro, V.L. & Magnusson, W.E. (2012). Limited effects of dominant ants on assemblage species richness in three Amazon forests. Ecological Entomology, 37: 1–12. doi: 10.1111/j.1365-2311.2011.01326.x

Baccaro, F.B., Rocha, I.F., del Aguila, B.E.G., Schietti, J., Emilio, T., do Veiga Pinto, J.L.P., Lima, A.P. & Magnusson, W.E. (2013). Changes in ground-dwelling ant functional diversity are correlated with water-table level in an Amazonian Terra Firme forest. Biotropica, 45: 755–763. doi: 10.1111/btp.12055.

Bardgett, R. D. (2002). Causes and consequences of biological diversity in soil. Zoology, 105: 367–374. doi: 10.1078/0944-2006-00072.

Benson, W. W. & Harada, A. Y. (1988). Local diversity of tropical and temperate ant faunas (Hymenoptera, Formicidae). Acta Amazonica, 18: 275–289.

Berghoff, S.M., Maschwitz, U. & Linsenmair, K. E. (2003). Hypogaeic and epigaeic ant diversity on Borneo: evaluation of baited sieve buckets as a study method. Tropical Zoology, 16: 153–163. doi: 10.1080/03946975.2003.10531192.

Brasil. (1978). Projeto RADAM BRASIL. Folha SB.20 Purus; geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro: Mineral, D.N.P., 566 p.

Brühl, C. A., Eltz T. & Linsenmair, K. E. (2003). Size does matter - effects of tropical rainforest fragmentation on the leaf litter ant community in Sabah, Malaysia. Biodiversity and Conservation, 12(7): 1371–1389. doi: 10.1023/A:1023621609102.

Chauvel, A., Lucas, Y. & Boulet, R. (1987). On the genesis of the soil mantle of the region of Manaus, central Amazonia, Brazil. Experientia, 43: 234–241. doi: 10.1007/BF01945546.

Costa, F.R.C. & Magnusson, W.E. (2010). The need for large-scale, integrated studies of biodiversity – the experience of the Program for Biodiversity Research in Brazilian Amazonia. Natureza & Conservação, 8: 3–10. doi: 10.4322/natcon.00801001.

Colwell, R. K. & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B, 345:101–118. doi: 10.1098/rstb.1994.0091.

Decaëns, T. (2010). Macroecological patterns in soil communities. Global Ecology and Biogeography, 19: 287–302.doi: 10.1111/j.1466-8238.2009.00517.x

Delabie, J.H.C. & Fowler, H.G. (1995). Soil and litter cryptic ant assemblages in Bahiain cocoa plantations. Pedobiologia, 39: 423–433.

Dias-Terceiro, R., Kaefer, I. L., Fraga, R. & Lima, A. (2015). A matter of scale: historical and environmental factors structure anuran assemblages from the upper Madeira river. Biotropica, 47, 259–266. doi: 10.1111/btp.12197.

Ettema, H.C. & Wardle, D.A. (2002). Spatial soil ecology. Trends Ecology and Evolution, Vol.17. 4: 177–183. doi: 10.1016/S0169-5347(02)02496-5.

Folgarait, P.J. (1998). Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity Conservation, 7: 1221–1244. doi: 10.1023/A:1008891901953

Fowler, H.G. & Delabie, J.H.C. (1995). Resource partitioning among epigaeic and hypogaeic ants (Hymenoptera: Formicidae) of an abandoned Brazilian cocoa plantation. Ecologia Austral, 5: 117–124.

Fowler, H.C., Delabie, J.H.C. & Moutinho, P.R.S. (2000). Hypogaeic and epigaeic ant (Hymenoptera: Formicidae) assemblages of Atlantic costal rainforest and dry mature and secondary Amazon forest in Brazil: Continuums or communities. Tropical Ecology, 41(1): 73–80

Franklin, J., Wejnert, K. E., Hathaway, A. S., Rochester, C. J. & Fisher, R. N. (2009). Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions, 15: 167–177. doi: 10.1111/j.1472-4642.2008.00536.x

Gomes, C. B., Souza, J. L. P. & Franklin, E. (2018). A comparison between time of exposure, number of pitfall traps and the sampling cost to capture ground-dwelling poneromorph ants (Hymenoptera: Formicidae). Sociobiology, 65(8): 138-148. doi: 10.13102/sociobiology.v65i2.1207

Guillaumet, J.L. (1987). Some structural and floristic aspects of the forest. Experientia, 43: 241–251.

Hölldobler, B. & Wilson, E. O. (1990). The Ants. Cambridge: Harvard University Press, 732 p.

Hsieh, T. C., Ma, K. H. & Chao, A. (2019). iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.19

IBGE. 1997. Recursos naturais e meio ambiente: uma visão do Brasil. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística, 208 p.

Kaspari, M. & Weiser, M.D. (2000). Ant activity along moisture gradients in a neotropical forest. Biotropica, 32(4a): 703–711. doi: 10.1111/j.1744-7429.2000.tb00518.x.

Kaspari, M. & Yanoviak, S.P. (2008). Biogeography of litter depth in tropical forests: evaluating the phosphorus growth hypothesis. Functional Ecology, 22(5): 919–923. doi: 10.1111/j.1365-2435.2008.01447.x.

LaPolla, J.S., Cover, S.P. & Mueller, U.G. (2002). Natural history of the mealybug-tending ant Acropyga epedana, with descriptions of the male and queen castes. Transactions of the American Entomological Society, 128 (4): 367-376

Lavelle, P. (1996). Diversity of soil fauna and ecosystem function. Biology International, 33: 3–16.

Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Roger, P., Ineson, P., Heal, O.W. & Dhillion, S. (1997). Soil function in a changing world: the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 33(4): 159-193.

Levings, S.C. & Franks N.R. (1982). Patterns of nest dispersion in a tropical ground ant community. Ecology, 63: 338–344.

Luizão, R.C.C., Luizão, F.J., Paiva, R.Q., Monteiro, T.F., Sousa, L.S. & Kruijt, B. (2004). Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology, 10(5): 592–600. doi: 10.1111/j.1529-8817.2003.00757.x.

Magnusson, W. E., Lima, A. P., Luizão, R., Luizão, F., Costa, F. R. & Castilho, C. V. (2005). Rapeld: a modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota Neotropica, 5 (2): 1–6.

Majer, J.D. 1983. Ants: bio-indicators of minesite rehabilitation, landuse, and land conservation. Environmental Management, 7: 375–383. doi: 10.1007/BF01866920.

Minchin, P.R. (1987). An evaluation of relative robustness of techniques for ecological ordinations. Vegetation, 69: 89–107.

Moldenke, A.R.; Pajutee, M. e Ingham, E. (2000). The functional roles of forest soil arthropods: The soil is a living place. In: Powers, R.F., Hauxwell, D.L. and Nakamura, G.M. (Eds.), Proceedings of the California forest soils council conference on forest soils biology and forest management (pp. 7–22). United States Departament of Agriculture. doi: 10.2737/PSW-GTR-178

Moraes, L., Pavan, D., Barros, M. C. & Ribas, C. (2016). Combined influence of riverine barriers and flooding gradient on biogeographical patterns of amphibians and squamates in South-eastern Amazonia. J. Biogeogr. 43(11), 2113–2124. doi: 10.1111/jbi.12756.

Nielsen, U.N., Osler, G. H.R., Campbell. C.D., Neilson R. & Burslem, D.F.R.P. (2010). The enigma of soil animal species diversity revisited: the role of small- scale heterogeneity. PLoS ONE, 5(7): e 11567. doi: 10.1371/journal.pone.0011567

Oliveira, P.Y., Souza, J.L.P., Baccaro, F.B. & Franklin, E. (2009). Ant species distribution along a topographic gradient in a "terra-firme" forest reserve in central Amazonia. Pesquisa Agropecuária Brasileira, 44: 852–860.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. & Wagner, H. (2019). Vegan: community ecology package. Version 2.5-5.

Pacheco, R. & Vasconcelos, H.L. (2012). Subterranean pitfall traps: is it worth including them in your ant sampling protocol? Psyche: A Journal of Entomology, article ID 870794, 9 pages. doi: 10.1155/2012/870794.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rabeling, C., Brown, J.M. & Verhaagh, M. (2008). Newly discovered sister lineage sheds light on early ant evolution. Proceedings of the National Academy of Science, 105 (39): 14913-14917. doi: 10.1073/pnas.0806187105.

Ranzani, G. (1980). Identificação e caracterização de alguns solos da Estação Experimental de Silvicultura Tropical do Inpa. Acta Amazonica, 10(1): 7–41. doi: 10.1590/1809-43921980101007.

Ribeiro, J.E.L.S., Hopkins, M.J.G., Vicentini, A., Sothers, C.A., Costa, M.A.S., Brito, J.M., Souza, M.A.D., Martins, L.H.P., Lohmann, L.G., Assuncão, P.P.C.L., Pereira, E.C., Silva, C.F., Mesquita, M.R. & Procópio, L.C. (1999). Flora da reserva Ducke: guia de identificação das plantas vasculares de uma floresta de terra-firme na Amazônia central. Manaus: Instituto Nacional de Pesquisas da Amazônia - INPA and Department for International Development - DFID, 816 p.

Santorelli Jr, S., Magnusson, W. E. & Deus, C. P. (2018). Most species are not limited by an Amazonian river postulated to be a border between endemism areas 8:2294 doi:10.1038/s41598-018-20596-7.

Schmidt, F. A. & Solar, R. R. C. (2010). Hypogaeic pitfall traps: methodological advances and remarks to improve the sampling of a hidden ant fauna. Insectes Sociaux, 57:261–266. doi: 10.1007/s00040-010-0078-1.

Schoener, T. W. (1974). Resource partitioning in ecological communities. Science, 174: 27–37.

Silva, R.R. & Silvestre, R. (2004). Riqueza da fauna de formigas (Hymenoptera: Formicidae) que habita as camadas superficiais do solo em Seara, Santa Catarina. Papéis Avulsos de Zoologia, 44(1): 1–11.

Silva, R.R. & Brandão, C.R.F. (2010). Morphological patterns and community organization in leaf-litter ant assemblages. Ecological Monographs, 80: 107–124. doi: 10.1890/08-1298.1

Souza, J.L.P., Baccaro, F.B., Landeiro, V.L., Franklin, E. & Magnusson, W.E. (2012). Trade-offs between complementarity and redundancy in the use of different sampling techniques for ground-dwelling ant assemblages. Applied Soil Ecology, 56: 63–73. doi: 10.1016/j.apsoil.2012.01.004.

Souza, J.L.P., Baccaro, F.B., Landeiro, V.L., Franklin, E., Magnusson, W.E., Pequeno, P.A.C.L. & Fernandes, I.O. (2016). Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. Diversity and Distribution. 22: 111–122. doi: 10.1111/ddi.12371.

Souza, J.L.P., Baccaro, F.B., Pequeno, P.A.C.L., Franklin, E. & Magnusson, W.E. (2018). Effectiveness of genera as a higher-taxon substitute for species in ant biodiversity analyses is not affected by sampling technique. Biodiversity and Conservation, 27: 3425 - 3445. doi: 10.1007/s10531-018-1607-x.

Stork, N.E. & Eggleton, P. (1992). Invertebrates as determinants and indicators of soil quality. American Journal of Alternative Agriculture, 7: 23–32. doi: 10.1017/S0889189300004446.

Underwood, E.C. & Fisher, B.L. (2006). The role of ants in conservation monitoring: if, when, and how. Biological Conservation, 132: 166–82. doi: 10.1016/j.biocon.2006.03.022

Vasconcelos, H. & Delabie, J.H.C. (2000). Ground ant communities from central Amazonia forest fragments. In: Agosti, D.; Majer, J.D.; Alonso, L. e Schultz, T. (Eds.), Sampling ground-dwelling ants: case studies from de world’s rain forests (p.59–70). Perth, Australia: Curtin University School of Environmental Biology.

Vasconcelos, H.L., Macedo, A.C.C. & Vilhena, J.M.S. (2003). Influence of topography on the distribution of ground-dwelling ants in an Amazonian Forest. Studies on Neotropical Fauna and Environment, 38: 115–124.

Vasconcelos, H.L. & Vilhena, J.M.S. (2006). Species turnover and vertical partitioning of ant assemblages in the Brazilian Amazon: a comparison of forests and savannas. Biotropica, 38(1):100–106. doi: 10.1111/j.1744-7429.2006.00113.x

Weiser, M.D. & Kaspari, M. (2006). Ecological morphospace of new world ants. Ecological Entomology, 31:131–142. doi: 10.1111/j.0307-6946.2006.00759.x

Wilkie, K.T.R.; Mertl, A.L. & Traniello, J.F.A. (2010). Species diversity and distribution patterns of the ants of Amazonian Ecuador. PLoS One, 5(10), ID e13146. doi: 10.1371/journal.pone.0013146

DOI: http://dx.doi.org/10.13102/sociobiology.v67i2.4851


  • There are currently no refbacks.

JCR Impact Factor 2018: 0.504