Annual survival rate of tropical stingless bee colonies (Meliponini): variation among habitats at the landscape scale in the Brazilian Atlantic Forest
DOI:
https://doi.org/10.13102/sociobiology.v68i1.5147Keywords:
resilience, mass-effect, reproduction rate, generalist, Tetragonisca angustula.Abstract
Stingless social bees live in perennial colonies whose longevity is influenced by various ecological factors. This study analyzed the influence of habitat anthropization and native forest regeneration stage on the longevity of natural colonies at the landscape scale. Random sampling of 25x25m plots, totaling 30ha per habitat type, located and monitored 118 nests of 14 species in the forest and 105 nests of six species in the anthropic habitat. Significant differences in colony longevity were observed between young and long-lived forests and between long-lived forests and anthropized habitat. Shorter longevities have generally been associated with a set of smaller-bodied species residing in anthropized habitats. The greatest longevities were associated with the three abundant and exclusive forest species, and was similar in the two forest regeneration stages: Melipona scutellaris, Scaptotrigona xanthotricha and Scaptotrigona bipunctata had high annual survival rates ranging from 87% to 93%. Another abundant species in the landscape was Tetragonisca angustula, a small habitat-generalist with short longevity (63%) that varied among habitats. Euclidean distance analysis based on this generalist placed young forest closest to anthropic habitat, and grouped the replicates of long-lived forest. Considering spatial variation in the life history traits, we infer that, among prospective landscape habitats, the Atlantic Forest favors stingless bees with high colonial longevity. On the other hand, generalists, such as T. angustula, with shorter colonial longevity and high reproduction rates are being favored by the expansion of anthropized habitats in place of deforested areas.
Downloads
References
Agosta, S.J. & Klemens, J.A. (2009). Resource specialization in a phytophagous insect: no evidence for genetically based performance trade-offs across hosts in the field or laboratory. Journal Compilatio European Society for Evolutionary Biology, 22: 907–912. doi:10.1111/j.1420-9101.2009.01694.x.
Alonzo, S.H. & Kindsvater, H.K. (2008). Life-History Patterns. In Jorgensen, S.E. and Fath, B.D. Encyclopedia of Ecology. Amsterdã, Elsevier B.V. Pp 2175-2180.
Araújo, E.D., Costa, M., Chaud-Netto, J., Fowler, H. (2004). Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology, 64(3B): 563-568. doi:10.1590/S1519-69842004000400003.
Batista, M.A., Ramalho, M. & Soares, A.E.E. (2003). Nesting sites and abundance of Meliponini (Hymenoptera: Apidae) in heterogeneous habitats of the atlantic rain forest, Bahia, Brazil. Lundiana, 4: 19-23.
Biesmeijer, J.C., Slaa, J. (2006).The structure of eusocial bee assemblages in Brazil. Apidologie, 37: 240-258. doi: 10.1051/apido:2006014.
Biesmeijer, J.C., Slaa, J. (2004). Information flow and organization of stingless bee foraging. Apidologie, 35: 143-157. doi: 10.1051/apido:2004003.
Brosi, B.J., Daily, G.C., Ehrlich, P.R. (2007). Bee community shifts with landscape context in a tropical countryside. Ecological Applications, 17: 418-430. doi: 10.18 90/06-0029.
Brown, J.C. & Albrecht, C. (2001). The effect of tropical deforestation on stingless bees of the genus Melipona (Insecta: Hymenoptera: Apidae: Meliponini) in central Rondonia, Brazil. Journal of Biogeography, 28: 623-634.
CEI-CONDER (BA). (1993). Informações básicas dos municípios baianos: Litoral Sul.Salvador, 1993. v 5. p.1100.
Eltz, T., Brühl, C.A., Kaars, S.V. & Linsenmair, K.E. (2002). Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia, 131: 27-34.
Engels, W. & Imperatriz-Fonseca, V.L. (1990). Caste development, reproductive strategies and control of fertility in honey bees andstingless bees. In:Social Insects: an Evolutionary Approach to Castesand Reproduction (Ed. by W. Engels), pp. 166-230. Berlin:Springer-Verlag.
Flesher, K.M. (2006). The biogeography of the medium and large mammals in a human dominated landscape in the Atlantic Forest of Bahia, Brazil: evidence for the role of agroforestry systems as wildlife habitat. Doctoral Tesis.Program in Ecology and Evolution. School-New Brunswick Rutgers, The State University of New Jersey. 624p.
Gouvêa, P.C. & Ramalho, M. (2020). Spatial structure and mass effect in a stingless bee population (Meliponini): a field experiment in a landscape with tropical forest and silviculture. N.p.
Hrncir, M., Maia-Silva, C., Teixeira-Souza, V.H.S. & Imperatriz-Fonseca, V.L. (2019). Stingless bees and their adaptations to extreme environments. Journal of Comparative Physiology A, 205: 415-426. doi: 10.1007/s00359-019-01327-3.
Janzen, D.H. (1985). On ecological fitting. Oikos, 45: 308-310.
Johnson, L.K. (1982). Patterns of communication and recruitment in stingless bees. Pp. 323-34. In: M. D. Breed; C. D. Michener & H. E. Evans (eds.). The biology of social insects. Westview Press, Boulder.
Johnson, L.K.; Hubbell, S. P. & Feener, D. H. (1987). Defense of food supply by eusocial colonies. American Zoologist, 27: 347-358.
Kleinert, A.M.P., Ramalho, M., Laurino, M.C., Ribeiro, M.F. & Impetratriz-Fonseca, V.L. (2012) Social bees (Meliponini, Apinini, Bombini). In: A.R. Panizzi, J.R.P. Parra (eds.) Insect Bioecology and Nutrition for Integrated Pest Management (pp. 237-271). CRC: Boca Raton.
Köppen, W. (1948). Climatologia: con un estudio de los climas de la terra. México: Fondo de Cultura Economica. 479p.
Lichtenberg, E.M., Mendenhall, C.D. & Brosi, B. (2017). Foraging traits modulate stingless bee community disassembly under forest loss. Journal of Animal Ecology, 86: 1401-1416. doi: 10.1111/1365-2656.12747.
Moo-Valle, H, Quezada-Euán, J.J.G. & Wenseleers, T. (2001). The effect of food reserves on the production of sexual offspring in the stingless bee Melipona beecheii (Apidae, Meliponini). Insectes Sociaux, 48: 398-403.
Nieh, J.C., Contrera, F.A.L., Yoon, R.R. et al. (2004). Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes. Behavioral Ecology and Sociobiology, 56: 435-448. doi: 10.1007/s00265-004-0804-7.
Ramalho, M. (2004). Stingless bees and mass flowering trees in the canopy of AtlanticForest: a tight relationship. Acta Botanica Brasilica, 18: 37-47. doi: 10.1590/S0102-33062004000100005.
Ricketts, T.H. (2004). Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conservation Biology, 18: 1262-71.doi: 10.1111/j.1523-1739.2004.00227.x
Roubik, D.W. (1983). Nest and colony characteristics of stingless bees from Panama (Hymenoptera: Apidae). Journal of the Kansas Entomological Society, 6: 327–355.
Roubik, D.N. (1989) Ecology and natural history of tropical bees. Cambridge University Press. 514p.
Roubik, D.W. 1993. Direct costs of forest reproduction, bee-cycling and the efficiency of pollination modes. Journal of Biosciences, 18: 537-552
Sakagami, S.F. (1982). Stingless bees. Pp. 361-423. In: H.R. Herman (ed.). Social insects. Academic Press Inc., New York.
Silva, M.D., Ramalho, M., Monteiro, D. (2013). Diversity and habitat use bystingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie, 44: 699-707. doi: 10.1007/s13592-013-0218-5.
Silva, M.D., Ramalho, M. & Monteiro, D. (2014). Communities of Social Bees (Apidae: Meliponini) in Trap-Nests:the Spatial Dynamics of Reproduction in an Area of Atlantic Forest. Neotropical Entomology, 43: 307-313. doi: 10.1007/s13744-014-0219-8.
Silva, M.D. & Ramalho, M. (2014). Tree species used for nesting by stingless bees (Hymenoptera: Apidae: Meliponini) in the Atlantic Rain Forest (Brazil): Availability or Selectivity. Sociobiology, 61: 415-422. doi: 10.13102/sociobiology.v61i4.415-422.
Slaa, E.J. (2006). Population dynamics of a stingless bee community in the seasonal dry lowlands of Costa Rica. Insectes Sociaux, 53: 70-79. doi: 10.1007/s00040-005-0837-6.
Stearns, S.C. 1997. The evolution of life histories. - Oxford: Oxford University Press.
Williams, N.M., Crone, E.E, Roulston, T.H., Minckley, R.L., Packer, L. & Potts S.G. (2010). Ecological and life history traits predict bee species responses to environmental disturbances. Biological Conservation, 143: 2280-2291. doi: 10.1016/j.biocon. 2010.03.024.
Woitowicz-Gruchowski, F.C., Silva, C.I. & Ramalho, M. (2020). Experimental field test of the influence of generalist stingless bees (Meliponini) on the topology of a bee-flower mutualistic network in the tropics. Ecological Entomology, 45: 854-866. doi: 10.1111/een.12862.
Downloads
Published
How to Cite
Issue
Section
License
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).