Magnetosensibility and Magnetic Properties of Ectatomma brunneun Smith, F. 1858 Ants

Márlon César Pereira, Maria da Graça Cardoso Pereira-Bomfim, Ingrid de Carvaho Guimarães, Candida Anitta Pereira Rodrigues, Jilder Peña Serna, Daniel Acosta-Avalo, William Fernando Antonialli-Junior

Abstract


The aim of the present paper is to study magnetosensibility and to seek for magnetic nanoparticles in ants. The social insects, by living in colonies, developed very efficient methods of nestmate recognition, being less tolerant towards individuals from other colonies. Therefore, any kind of strange behavior between nestmates and/or conspecifics, besides those present in their own behavioral repertoire, is not expected. The behavior study in the present paper analyze whether changes in the intensity of applied magnetic fields on Ectatomma brunneun (Smith) ants can cause changes in the normal pattern of interaction between conspecifics. A pair of coils generating a magnetic field was used to change the whole local geomagnetic field. Magnetometry studies were done on abdomens and head + antennae using a SQUID magnetometer. The results show that changes in the geomagnetic field affect the usual pattern of interactions between workers from different colonies. The magnetometry results show that abdomens present superparamagnetic nanoparticles and heads present magnetic single domain nanoparticles. Behavior experiments show for the first time that Ectatomma brunneun ants are magnetosensible. The change in nestmate recognition of Ectatomma ants observed while a magnetic field is applied can be associated to some kind of disturbance in a magnetosensor presented in the body based on magnetic nanoparticles.

Keywords


Aggression, Ectatomminae, magnetometry, insect behavior

Full Text:

PDF

References


Acosta-Avalos, D., Wajnberg, E., Oliveira, O.S., Leal, I., Farina, M. & Esquivel, D.M.S. (1999). Isolation of magnetic nanoparticles from Pachycondyla marginata ants. Journal of Experimental Biology, 202: 2687-2692.

Anderson, J.B. & Vander Meer, R.K. (1993). Magnetic orientation in the fire ant, Solenopsis invicta. Naturwissenschaften, 80: 568-570. doi: 10.1007/BF01149274

Alves, O.C., Srygley, R.B., Riveros, A.J., Barbosa, M.A., Esquivel, D.M.S. & Wajnberg, E. (2014). Magnetic anisotropy and organization of nanoparticles in heads and antennae of neotropical leaf-cutter ants, Atta colombica. Journal of Physics D: Applied. Physics, 47: 435401. doi: 10.1088/0022-3727/47/43/435401

Chen, J.S.C. & Nonacs, P. (2000). Nestmate recognition and intraspecific aggression based on environmental cues in Argentine ants (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 93: 1333-1337. doi: 10.1603/0013-8746(2000)093[1333:NRAIAB]2.0.CO;2

Crozier, R.H. & Pamilo, P. (1996). Evolution of Social Insect Colonies: Sex Allocation and Kin-Selection. Oxford, UK: Oxford University Press.

Dell, A.I., Pawa,r S. & Savage, V.M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits. Proceedings of the National Academy of Sciences, USA, 108: 10591-10596. doi 10.1073/pnas.1015178108

Dell, A.I., Pawar, S & Savage, V.M. (2014). Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. Journal of Animal Ecology, 83: 70-84. doi: 10.1111/1365-2656.12081

d’Ettorre, P. & Lenoir, A. (2010). Nestmate recognition. In: Lach L., Parr C., Abbott K., editors. Ant Ecology. 1st ed (pp. 194-209). Oxford, UK: Oxford University Press.

Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D. & Martin, P.R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences,USA, 105: 6668-6672. doi: 10.1073/pnas.0709472105

Dunn, R. & Messier, S. (1999). Evidence for the opposite of the dear enemy phenomenon in termites. Journal of Insect Behavior, 12: 461-464.

Frizzi, F., Ciofi, C., Dapporto, L., Natali, C., Chelazzi, G., Turillazzi, S. & Giacomo, Santini. (2015) The rules of aggression: How genetic, chemical and spatial factors affect intercolony fights in a dominant species, the mediterranean acrobat ant Crematogaster scutellaris. PLoS One 10: e0137919. doi: 10.1371/journal.pone.0137919

Gilbert, B., Tunney, T.D., McCann, K.S., DeLong, J.P., Vasseur, D.A., Savage, V., Shurin, J.B., Dell, A.I., Barton, B.T., Harley, C.D.G., Kharouba, H.M., Kratina, P., Blanchard, J.L., Clements, C., Winder, M., Greig, H.S. & O'Connor, M.I. (2014). A bioenergetic framework for the temperature dependence of trophic interactions. Ecology Letters, 17: 902-914. doi: 10.1111/ele.12307

Gordon, D.M. (1989). Ants distinguish neighbor from strangers. Oecologia, 81: 198-200. doi: 10.1007/BF00379806

Helanterä, H., Lee, Y.R., Drijfhout, F.P. & Martin, S.J. (2011). Genetic diversity, colony chemical phenotype, and nest mate recognition in the ant Formica fusca. Behavioral Ecology, 22: 710-716. doi: 10.1093/beheco/arr037

Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A., Jess, M. & Williams, S.E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367: 1665-1679. doi: 10.1098/rstb.2012.0005

Johnsen, S. & Lohmann, K.J. (2005). The physics and neurobiology of magnetoreception. Nature Reviews Neuroscience, 6: 703-712. doi: 10.1038/nrn1745

Jutsum, A.R, Saunders, T.S. & Cherrett, J.M. (1979). Intraspecific aggression in the leaf-cutting ant Acromyrmex octospinosus. Animal Behaviour, 27: 839-844. doi: 10.1016/0003-3472(79)90021-6

Kermarrec, A. (1981). Sensibilite a un champ magnetique artificial et reaction d’evitement chez Acromyrmex octospinosus (Reich) (Formicidae, Attini). Insectes Sociaux, 28: 40-46. doi: 10.1007/BF02223621

Liang, D. & Silverman, J. (2000). “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, 897: 412-416. doi: 10.1007/s001140050752

Lucano, M.J., Cernicchiaro, G., Wajnberg, E &, Esquivel, D.M.S. (2006). Stingless bee antennae: a magnetic sensory organ? Biometals, 19: 295-300. doi: 10.1007/s10534-005-0520-4

Matthews, R.W. & Matthews, J.R. (2010). Insect Behaviour. London, UK: Springer, 513 p.

Monnin, T. & Peeters, C. (1999). Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behavioral Ecology, 10: 323-332. doi: 10.1093/beheco/10.3.323

Newey, P.S., Robson, K.S.K.A. & Crozier, R.H. (2010). Weaver ants Oecoplylla smaragdina encounter nasty neighbors rather than dear enemies. Ecology, 9: 2366-2372. doi: 10.1890/09-0561.1

Oliveira, J.F., Wajnberg, E., Esquivel, D.M.S., Weinkauf, S., Winklhofer, M. & Hanzlik, M. (2010). Ant antennae: are they sites for magnetoreception? Journal of the Royal Society Interface, 7: 143-152. doi: 10.1098/rsif.2009.0102

Peck, M.A., Huh, Y., Skomski, R., Zhang, R., Kharel, P., Allison, M.D., Sellmyer, D.J. & Langell, M.A. (2011). Magnetic properties of NiO and (Ni,Zn)O nanoclusters. Journal of Applied Physics, 109: 07B518. doi: 10.1063/1.3556953

Pereira-Bomfim, M.G.C., Antonialli-Junior, W.F. & Acosta-Avalos, D. (2015). Effect of magnetic field on the foraging rhythm and behavior of the swarm-founding paper wasp Polybia paulista Ihering (Hymenoptera: Vespidae). Sociobiology, 62: 99-104. doi: 10.13102/sociobiology.v62i1.99-104

Pereira, M.C., Firmino, E.L.B., Bernardi, R.C., Lima, L.D., Guimarães, I.C., Cardoso, C.A.L. & Antonialli-Junior, W.F. (2019). Dear enemy phenomenon in the ant Ectatomma brunneum (Formicidae: Ectatomminae): Chemical signals mediate intraspecifc aggressive interactons. Sociobiology, 66: 218-226. doi: 10.13102/sociobiology.v66i2.3554

Ratnieks, F.L.W., Foster, K.R. & Wenseleers, T. (2006). Conflict resolution in insect societies. Annual Review of Entomology, 51: 581-608. doi: 10.1146/annurev.ento.51.110104.151003

Sanada-Morimura, S., Minai, M., Yokoyama, M., Hirota, T., Satoh, T. & Obara, Y. (2003). Encounter-induced hostility to neighbors in the ant Pristomyrmex pungens. Behavioral Ecology, 14: 713-718. doi: 10.1093/beheco/arg057

Sorvari, J., Theodora, P., Turillazzi, S., Hakkarainen, H. & Sundsteöm, L. (2008). Food resources, chemical signaling, and nestmate recognition in the ant Formica aquilonia. Behavioral Ecology, 19: 441-447. doi: 10.1093/beheco/arm160

Sturgis, S.J. & Gordon, M.D. (2012). Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecological News, 16: 101-110.

Suarez, A.V., Tsuitsui, N.D., Holway, D.A. & Case, T.J. (1999). Behavioral and genetic differentiation between native and introduced populations of the Argentine ant. Biological Invasions, 1: 43-53. doi: 10.1023/A:1010038413690

Sunday, J.M., Bates, A.E., Kearney, M.R, Colwell, R.K., Dulvy, N.K., Longino, J.T. & Huey, R.B. (2014). Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences, USA, 111: 5610-5615. doi: 10.1073/pnas.1316145111

Temeless, E.J. (1994). The role of neighbours in territorial systems: when are they “dear enemies?” Animal Behaviour, 47: 339-350. doi: 10.1006/anbe.1994.1047

Thomas, M.L., Tsutsui, N.D. & Holway, D.A. (2004). Intraspecific competition influences the symmetry and intensity of aggression in the Argentine ant. Behavioral Ecology, 16: 472-481. doi: 10.1093/beheco/ari014

van Zweden, J.S, Dreier, S. & d’Ettorre, P. (2009). Disentangling environmental and heritable nestmate recognition cues in a carpenter ant. Journal of Insect Physiology, 55: 158-163. doi: 10.1016/j.jinsphys.2008.11.001

van Zweden, J.S. & d’Ettorre, P. (2010). Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist G.J., Bagnères A.G., editors. Insect hydrocarbons biology, biochemistry, and chemical ecology. 1st ed. Cambridge, UK: Cambridge University Press. p. 222 - 243.

Vasseur, D.A., DeLong, J.P., Gilbert, B., Greig, H.S., Harley, C.D.G., McCann, K.S., Savage, V., Tunney, T.D. & O’Connor, M.I. (2014). Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences, 281: 20132612. doi: 10.1098/rspb.2013.2612

Vowles, D.M. (1954). The orientation of ants. II. Orientation to light, gravity and polarized light. Journal of Experimental Biology, 31: 356-375.

Wajnberg, E., Acosta-Avalos, D., El-Jaick, L.J., Abraçado, L., Coelho, J.L.A., Bakuzis, A.F., Morais, P.C. & Esquivel, D.M.S. (2000). Electron paramagnetic resonance study of the migratory ant Pachycondyla marginata abdomens. Biophysical Journal, 78: 1018-1023. doi: 10.1016/S0006-3495(00)76660-4

Wajnberg, E., Cernicchiaro, G. & Esquivel, D.M.S. (2004). Antennae: the strongest magnetic part of the migratory ant. Biometals, 17: 467-470. doi: 10.1023/B:BIOM.0000029443.93732.62

Wajnberg, E., Acosta-Avalos, D., Alves, O.C., de Oliveira, J.F., Srygley, R.B. & Esquivel, D.M.S. (2010). Magnetoreception in eusocial insects: an update. Journal of the Royal Society Interface. 7: S207-S225. doi: 10.1098/rsif.2009.0526.focus

Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesank, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O. & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416: 389-395. doi: 10.1038/416389a

Wiltschko, W. & Wiltschko, R. (2005). Magnetic orientation and magnetoreception in birds and other animals. Journal of Comparative Physiology, 191: 675-693. doi: 10.1007/s00359-005-0627-7

Woods, H.A., Dillon, M.E. & Pincebourde, S. (2015). The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. Journal of Thermal Biology, 54: 86-97. doi: 10.1016/j.jtherbio.2014.10.002

Youk H (2005) Numerical study of quadrupole magnetic traps for neutral atoms: anti-Helmholtz cois and a U-chip. Canadian Undergraduate Physics Journal, 3: 13-18.

Zinck, L., Hora, R.R., Chaline, N. & Jaisson, P. (2008). Low intraspecific aggression level in the polydomous and facultative polygynous ant Ectatomma tuberculatum. Entomologia Experimentalis et Applicata, 126: 211-216. doi: 10.1111/j.1570-7458.2007.00654.x




DOI: http://dx.doi.org/10.13102/sociobiology.v68i1.5188

Refbacks

  • There are currently no refbacks.


JOURNAL METRICS

 

JCR Impact Factor (2019): 0.690

JCR 5-year Impact Factor (2019): 0.846

Google Scholar h5-index (Insects and Arthropods journals): 12 

Scimago h-index (whole journal circulation period): 37         

Scopus CiteScore (2016-2019): 0.90

Mean time for editorial decision (2020): 78 days

Mean time for article publication (2020): 171 days

 

Sociobiology is indexed in the following databases: