Diversity of Eusocial Bees in Natural and Anthropized Areas of a Tropical Dry Forest in the Parque da Sapucaia (Montes Claros, Minas Gerais, Brazil)

Priscila Santos Gonçalves, Walter Santos de Araújo

Abstract


 In the present study we inventoried the diversity of eusocial bees (Hymenoptera: Apidae) in preserved and anthropized areas of a tropical dry forest in the Parque da Sapucaia (Montes Claros, Minas Gerais, Brazil). We tested the hypothesis that the diversity of bee species would: 1) be greater in the preserved areas, 2) respond positively to the structure of the vegetation and 3) decrease during the dry season. We sampled eusocial bee species in 18 plots of 10 x 10 m distributed throughout the park, being nine plots in anthropized areas and nine plots in areas with preserved vegetation.  In total we recorded 382 individuals and eight species of eusocial bees. The most abundant species was Oxytrigona tataira (Smith) (N = 233) and the most common species was Trigona spinipes (Fabricius) recorded in 72.2% of the plots. As expected, we found that eusocial bee diversity (Shannon diversity) was higher in preserved plots than in anthropized plots. Tree species richness positively affected bee species richness and abundance, while tree abundance positively influenced the bee abundance and tree height positively affected the bee Shannon diversity, corroborating our expectations. On the other hand, we detected no differences in the diversity of eusocial bees between dry and rainy seasons. Our findings suggest that both natural (vegetation structure) and anthropogenic (habitat modification) factors are important predictors of the diversity of eusocial bee species in tropical dry forests.


Keywords


eusocial insects; Meliponini; pollination; plant-animal interaction; stingless bee

Full Text:

PDF

References


Alvarenga, A.S., Silveira, F.A., dos Santos Júnior, J.E., de Novais, S.M.A., Quesada, M. & Neves, F.S. (2020). Vegetation composition and structure determine wild bee communities in a tropical dry forest. Journal of Insect Conservation, 24: 487-498. doi: 10.1007/s10841-020-00231-5.

Alvares, C.A, Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G. (2014). Köppen’s Climate Classification Map for Brazil. Meteorologische Zeitschrift, 22: 711-728. doi: 10.1127/0941-2948/2013/0507.

Aguiar, W.M. & Galianone, M.C. (2012). Euglossine bees communities in small forest fragments of the Atlantic Forest, Rio de Janeiro state, southeastern Brazil. Revista Brasileira de Entomologia, 56: 130-139. doi: 10.1590/S0085-56262012005000018.

Collado, M.A., Sol, D. & Bartomeus, I. (2019). Bees use anthropogenic habitats despite strong natural habitat preferences. Diversity and Distributions, 25: 924-935. doi: 10.1101/278812.

Costa, K.C.S. & Araújo, W.S. (2019). Distribution of gall-inducing arthropods in areas of deciduous seasonal forest of Parque da Sapucaia (Montes Claros, MG, Brazil): effects of anthropization, vegetation structure and seasonality. Papéis Avulsos de Zoologia, 59: e20195931. doi: 10.11606/1807-0205/2019.59.31.

Dupin, M.G., Espírito-Santo, M.M., Leite, M.E., Silva, J.O., Rocha, A.M., Barbosa, R.S. & Anaya, F.C. (2018). Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015. Environmental Research Letters, 13: 035008. doi: 10.1088/1748-9326/aaadea/meta.

Ebeling, A., Klein, A.M., Schumacher, J., Weisser, W.W. & Tscharntke, T. (2008). How does plant richness affect pollinator richness and temporal stability of flower visits? Oikos, 117: 1808-1815. doi: 10.1111/j.1600-0706.2008.16819.x.

Ferreira, P.A., Boscolo, D., Carvalheiro, L.G., Biesmeijer, J.C., Rocha, P.L. & Viana, B.F. (2015). Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology, 30: 2067-2078. doi: 10.1007/s10980-015-0231-3.

Garibaldi, L.A., Carvalheiro, L.G., Leonhardt, S.D., Aizen, M.A., Blaauw, B.R., Isaacs, R., Kuhlmann, M., Kleijn, D., Klein, A.M., Kremen, C., Morandin, L., Scheper, J. & Winfree, R. (2014). From research to action: practices to enhance crop yield through wild pollinators. Frontiers in Ecology and the Environment, 12:439-447. doi: 10.1890/130330.

González-Varo, J.P., Biesmeijer, J.C., Bommarco, R., Potts, S.G., Schweiger, O., Smith, H. G., Steffan-Dewenter, I., Szentgyörgyi, H., Woyciechowski, M. & Vilà, M. (2013). Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 28: 524-30. doi: 10.1016/j.tree.2013.05.008.

Gostinski, L.F., Carvalho, G.C.A., Rêgo, M.M.C. & Albuquerque, P.M.C. (2016). Species richness and activity pattern of bees (Hymenoptera, Apidae) in the restinga area of Lençóis Maranhenses National Park, Barreirinhas, Maranhão, Brazil. Revista Brasileira de Entomologia, 60: 319-327. doi: 10.1016/j.rbe.2016.08.004.

Grundel, R., Jean, R.P., Frohnapple, K.J., Glowacki, G.A., Scott, P.E. & Pavlovic, N.B. (2010). Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient. Ecological Application, 20: 1678-92. doi: 10.1890/08-1792.1.

Hammer, Ø., Harper D.A.T. & Ryan P.D. (2001). PAST – Palaeontological Statistics. Palaeontologia Electronica, 4: 1 9.

Hung, K.L.J., Kingston, J.M., Albrecht, M., Holway, D.A., Kohn, J.R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society, Biological Sciences, 285: 20172140. doi: 10.1098/rspb.2017.2140.

Liow, L.H., Sodhi, N.S. & Elmqvist, T. (2001). Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. Journal of Applied Ecology, 38: 180-192. doi: 10.1046/j.1365-2664.2001.00582.x.

Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274: 303-313. doi: 10.1098/rspb.2006.3721.

Martins, A.C., Gonçalves, R.B. & Melo, G.A. (2013). Changes in wild bee fauna of a grassland in Brazil reveal negative effects associated with growing urbanization during the last 40 years. Zoologia, 30: 157-176. doi: 10.1590/S1984-46702013000200006.

Miles, L., Newton, A.C., DeFries, R.S., Ravilious, C., May, I., Blyth, S., Kapos, V. & Gordon, J.E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33: 491-505. doi: 10.1111/j.1365-2699.2005.01424.x.

Milet-Pinheiro, P. & Schlindwein, C. (2008). Comunidade de abelhas (Hymenoptera, Apoidea) e plantas em uma área do Agreste pernambucano, Brasil. Revista Brasileira de Entomologia, 52: 625-636. doi: 10.1590/S0085-5626200800 0400014.

Murphy, P. & Lugo, A. (1986). Ecology of tropical dry forest. Annual Review of Ecology, Evolution, and Systematics, 17:67-88. doi: 10.1146/annurev.es.17.110186.000435.

Nemésio, A. & Silveira, F. A. (2010). Forest fragments with larger central areas better support the various bee faunas (Hymenoptera: Apidae: Euglossina). Neotropical Entomology, 39: 555-561. doi: 10.1590/S1519-566X2010000400014.

Oliveira, F.S., Mendonça, M.W.A., Vidigal, M.C.S., Rêgo, M.M.C. & Albuquerque, P.M.C. (2010). Comunidade de abelhas (Hymenoptera, Apoidea) em ecossistema de dunas na Praia de Panaquatira, São José de Ribamar, Maranhão, Brasil. Revista Brasileira de Entomologia, 54: 82-90. doi: 10.1590/S0085-56262010000100010.

Pedro, S.R. (2014). The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 61: 348-354. doi: 10.13102/sociobiology.v61i4.348-354.

Pengelly, C.J. & Cartar, R.V. (2010). Effects of variable retention logging in the boreal forest on the bumble bee-influenced pollination community, evaluated 8–9 years post-logging. Forest Ecology and Management, 260: 994-1002. doi: 10.1016/j.foreco.2010.06.020.

Plascencia, M. & Philpott, S.M. (2017). Floral abundance, richness, and spatial distribution drive urban garden bee communities. Bulletin of Entomological Research, 107: 658-667. doi: 10.1017/S0007485317000153.

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25: 345-353. doi: 10.1016/j.tree.2010.01.007.

R Development Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

Ricketts, T.H., Regetz, J., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S.S., Klein, A.M., Mayfield, M.M., Morandin, L.A., Ochieng, A. & Viana, B.F. (2008). Landscape effects on crop pollination services: are there general patterns? Ecology Letters, 11: 1121-1121. doi: 10.1111/j.1461-0248. 2008.01157.x.

Romey, W.L., Ascher, J.S., Powell, D.A. & Yanek, M. (2007). Impacts of logging on midsummer diversity of native bees (Apoidea) in a northern hardwood forest. Journal of the Kansas Entomological Society, 80: 327-338. doi: 10.2317/0022-8567(2007)80[327:IOLOMD]2.0.CO;2.

Rubene, D., Schroeder, M. & Ranius, T. 2015. Diversity patterns of wild bees and wasps in managed boreal forests: Effects of spatial structure, local habitat and surrounding landscape. Biological Conservation, 184: 201-208. doi: 10.10 16/j.biocon.2015.01.029.

Sánchez-Azofeifa, G.A., Kalacska, M., Quesada, M., Calvo-Alvarado, J.C., Nassar, J. M. & Rodríguez, J.P. (2005). Need for integrated research for a sustainable future in tropical dry forests. Conservation Biology, 19: 285-286. doi: 10.1111/j.1523-1739.2005.s01_1.x.

Santos, R.M., Vieira, F.A., Gusmão, E. & Nunes, Y.R.F. (2007). Florística e estrutura de uma Floresta Estacional Decidual, no Parque Municipal do Sapucaia, Montes Claros (MG). Cerne, 13: 248-256.

Silveira, F. A., Melo, G. A. & Almeida, E. A. (2002). Abelhas brasileiras. Sistemática e Identificação. Belo Horizonte: Fundação Araucária, 253 p.

Souza, S.G.X., Melo, A.M.C., Neves, E.L. & Teixeira, A. (2015). As abelhas sem ferrão (Apidae: Meliponina) residentes no campus Federação/Ondina da Universidade Federal da Bahia, Salvador, Bahia, Brasil. Candombá - Revista Virtual 1: 57-69.

Stein, K., Stenchly, K., Coulibaly, D., Pauly, A., Dimobe, K., Steffan-Dewenter, I., Konaté, Goetze, D., Porembski, S. & Linsenmair, K.E. (2018). Impact of human disturbance on bee pollinator communities in savanna and agricultural sites in Burkina Faso, West Africa. Ecology and Evolution, 8: 6827-6838. doi: 10.1002/ece3.4197.

Sydenham, M.A., Moe, S.R., Stanescu-Yadav, D.N., Totland, Ø. & Eldegard, K. (2016). The effects of habitat management on the species, phylogenetic and functional diversity of bees are modified by the environmental context. Ecology and Evolution, 6: 961-973. doi: 10.1002/ece3.1963.

Taki, H., Kevan, P.G., & Ascher, J.S. (2007). Landscape effects of forest loss in a pollination system. Landscape Ecology, 22: 1575-1587. doi: 10.1007/s10980-007-9153-z.

Taki, H., Okochi, I., Okabe, K., Inoue, T., Goto, H., Matsumura, T. & Makino, S. (2013). Succession Influences Wild Bees in a Temperate Forest Landscape: The Value of Early Successional Stages in Naturally Regenerated and Planted Forests. Plos One, 8: e56678. doi: 10.1371/journal.pone.0056678.

Tews, J., Brose, U., Grimm, V., Tielborger K., Wichmann, M.C., Schwager, M. & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31: 79-92. doi: 10.1046/j.0305-0270.2003.00994.x.

Tylianakis, J.M. (2013). The global plight of pollinators. Science, 339: 1532-1533. doi: 10.1126/science.1235464.

Valido, A., Rodríguez-Rodríguez, M.C. & Jordano, P. (2019). Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports, 9: 1-11. doi: 10.1038/s41598-019-41271-5.

Winfree, R., Aguilar, R., Vázquez, D.P., LeBuhn, G., & Aizen, M.A. (2009). A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology, 90: 2068-2076. doi: 10.1890/08-1245.1.

Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L. & Potts, S.G. (2010). Ecological and life-history traits predict bee species responses to environmental disturbances. Biological Conservation, 143: 2280-2291. doi: 10.1016/j.biocon.2010.03.024.

Wu, P., Axmacher, J.C., Song, X., Zhang, X., Xu, H., Chen, C. & Liu, Y. (2018). Effects of Plant Diversity, Vegetation Composition, and Habitat Type on Different Functional Trait Groups of Wild Bees in Rural Beijing. Journal of Insect Science, 18: 1-9. doi: 10.1093/jisesa/iey065.

Zanella, F.C.V. (2000). The bees of the caatinga (Hymenoptera, Apoidea, Apiformes): a species list and comparative notes regarding their distribution. Apidologie, 31: 579-592. doi: 10.1051/apido:2000148.

Zanette, L.R.S., Martins, R.P. & Ribeiro, S.P. (2005). Effects of urbanization on Neotropical wasp and bee assemblages in a Brazilian metropolis. Landscape and Urban Planning, 71: 105-121. doi: 10.1016/j.landurbplan.2004.02.003.




DOI: http://dx.doi.org/10.13102/sociobiology.v68i1.5305

Refbacks

  • There are currently no refbacks.


JOURNAL METRICS

 

JCR Impact Factor (2019): 0.690

JCR 5-year Impact Factor (2019): 0.846

Google Scholar h5-index (Insects and Arthropods journals): 12 

Scimago h-index (whole journal circulation period): 37         

Scopus CiteScore (2016-2019): 0.90

Mean time for editorial decision (2020): 78 days

Mean time for article publication (2020): 171 days

 

Sociobiology is indexed in the following databases: