Aggregation and Feeding Behavior of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae) on Wood Decayed by Three Species of Wood Rot Fungi

Mary L. Cornelius

Abstract


Aggregation and feeding behavior of the Formosan subterranean termite, Coptotermes formosanus Shiraki, was evaluated on wood decayed by three species of fungus, the brown rot fungus, Gloeophyllum trabeum and two white rot fungi, Phanerochaete chrysosporium and Pycnoporus cinnibarinus. Although termites aggregated on decayed sawdust from all three species in at least some of the tests, sawdust decayed by P. chrysosporium elicited aggregation behavior by termites over the greatest range of incubation periods. In some tests, termites avoided sawdust decayed by G. trabeum. Termite feeding on blocks decayed for 90 d was significantly greater than on control blocks for all three species of fungi, despite the significantly lower decay rate of P. cinnibarinus. Increasing our understanding of the interaction of termites with wood rot fungi could lead to the identification of chemicals that attract termites to bait stations.


Keywords


Coptotermes formosanus; fungus; aggregation; consumption; decay

Full Text:

PDF

References


Aanen, D. K., P. Eggleton, C. Rouland-Lefevre, T. Guldberg-Froslev, S. Rosendahl & J. J. Boomsma. 2002 The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences 99 (23): 14887– 14892.

Alves, A. M. C. R., E. Record, A.K Lomascolo, A. Scholtmeijer, M Asther, J. G. H Wessels & H. A. B. Wösten. 2004. Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus. Applied and Environmental Microbiology 70 (11): 6379- 6384.

Amburgey, T. L. 1979. Review and checklist of the literature on interactions between wood-inhabiting fungi and subterranean termites: 1960-1978. Sociobiology 4 (2): 279-296.

Amburgey, T. L. & R. H. Beal. 1977. White rot inhibits termite attack. Sociobiology 3 (1): 35-38.

Amburgey, T. L. & R. V. Smythe. 1977. Factors influencing termite feeding on brown-rotted wood. Sociobiology 3 (1): 3-12.

Amburgey, T. L., G. N. Johnson & J. L. Etheridge. 1981. A method to mass produce decayed-wood termite bait blocks. Journal of Georgia Entomological Society 16 (1): 106-112.

Becker, G. 1976. Termites and fungi. Material und Organismen, Bieheft 3: 465-478.

Breznak, J. A. & A. Brune. 1994. Role of microorganisms in the digestion of lignocelluloses by termites. Annual Review of Entomology 39: 453–487.

Brune, A. 2006. Symbiotic associations between termites and prokaryotes. pp. 439-474. In: M. Dworkin, S. Falkow, E. Rosenberg, K-H. Schleifer & E. Stackebrandt [eds.]. Prokaryotes, Springer, New York, NY, USA.

Cornelius, M. L., D. J. Daigle, W. J. Connick, Jr., A. Parker & K. Wunch. 2002. Responses of Coptotermes formosanus and Reticulitermes flavipes (Isoptera: Rhinotermitidae) to three types of wood rot fungi cultured on different substrates. Journal of Economic Entomology 95 (1): 121-128.

Cornelius, M. L., Lyn, M., K. S. Williams, M. P. Lovisa, A. J. De Lucca, II & A. R. Lax. 2009. Efficacy of bait supplements for improving the rate of discovery of bait stations in the field by Formosan subterranean termites (Isoptera: Rhinotermitidae). Journal of Economic Entomology 102 (3): 1175-1181.

Coy , M. R., T .Z. Salem , J. S. Denton, E. S. Kovaleva, Z. Liu, D. S. Barber, J. H. Campbell, D. C. Davis, G. W. Buchman, D. G. Boucias & M. E. Scharf. 2010. Phenol-oxidizing laccases from the termite gut. Insect Biochemistry and Molecular Biology 40: 723-732.

Darlington, J. P. E. C. 1994. Nutrition and evolution in fungus-growing termites. pp. 105–130. In: J. H. Hunt & C. A. Nalepa [eds.]. Nourishment and Evolution in Insect Societies, Westview Press, Boulder, CO., USA.

Eggert, C., U. Temp & K-E. L. Eriksson.1996.The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied Environmental Microbiology 62 (4): 1151–1158.

Esenther, G. R & R. H. Beal. 1974. Attractant-mirex bait suppresses activity of Reticulitermes spp. Journal of Economic Entomology 67 (1): 85-88.

Esenther, G. R., T. C. Allen, J. E. Casida & R. D. Shenefelt. 1961. Termite attractant from fungus-infected wood. Science 134 (3471): 50.

Geib, S. M., T. R. Filley, P. G. Hatcher, K. Hoover, J. E. Carlson, M. del Mar Jimenez-Gasco, A. Nakagawa-Izumi, R. L. Sleighter & M. Tien. 2008. Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences 105 (35): 12932-1237.

Getty, G. M. & M. I. Haverty. 1998. Consumption of sound and decayed Ponderosa pine and douglas-fir by Reticulitermes spp. (Isoptera: Rhinotermitidae) from Northern California. Journal of Economic Entomology 91 (3): 650-654.

Green III, F. & T. L. Highley. 1997. Mechanism of brown-rot decay: Paradigm or paradox. International Biodeterioration and Biodegradation. 39:113-124.

Jayasimha, P. & G. Henderson. 2007a. Suppression of growth of a brown rot fungus, Gloeophyllum trabeum, by Formosan subterranean termites (Isoptera: Rhinotermitidae). Annals of the Entomological Society of America 100 (4): 506-511.

Jayasimha, P. & G. Henderson. 2007b. Fungi isolated from integument and guts of Coptotermes formosanus and their antagonistic effect on Gloeophyllum trabeum. Annals of the Entomological Society of America 100 (5): 703-710.

Ke, J., D. Dhrubojyoti, D. Laskar, D. Singh & S. Chen. 2011. In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnology for Biofuel, 4 (1):17.

Lenz, M., T. L. Amburgey, D. Zi.Rong, J. K. Mauldin, A. F. Preston, D.Rudolph & E. R. Williams. 1991. Interlaboratory studies on termite-wood decay fungi associations: II. Response of termites to Gloeophyllum trabeum grown on different species of wood (Isoptera: Mastotermitidae, Termopsidae, Rhinotermitidae, Termitidae). Sociobiology 18 (2): 203-254.

Lenz, M., D. B. A. Ruyooka & C. D. Howick. 1980. The effect of brown and white rot fungi on wood consumption and survival of Coptotermes lacteus (Frogatt) (Isoptera: Rhinotermitidae) in a laboratory bioassay. Zeitschrift fur Angewandte Entomologie. 89: 344-362.

Matsumura, F., H. C. Coppel & A. Tai. 1968. Isolation and identification of termite trailfollowing pheromone. Nature 219 ( 5157): 963-964.

Nakashima, K., H. Watanabe & J. I. Azuma. 2002. Cellulase genes from the parabasalian symbiont Pseudotrichonympha grassii in the hindgut of the wood-feeding termite Coptotermes formosanus. Cellular and Molecular Life Sciences 59: 1554-1560.

Rust, M. K., K. Haagsma & J. Nyugyen.1996. Enhancing foraging of western subterranean termites (Isoptera: Rhinotermitidae) in arid environments. Sociobiology 28 (3):275- 286.

Scharf, M. E., Z. J. Karl, A. Sethi & D. G. Boucias. 2011. Multiple levels of synergistic collaboration in termite lignocellulose digestion. PLoS ONE 6 (7): e21709.

Su, N.-Y. 2005. Directional change in tunneling of subterranean termites (Isoptera: Rhinotermitidae) in response to decayed wood attractants. Journal of Economic Entomology 98 (2): 471-475.

Systat Software, Inc. 2008.SYSTAT statistical package, version 12.0. Systat Software, Inc., San Jose, CA, USA.

Zhang, D., A. R. Lax, J. M. Bland & A. B. Allen.2011. Characterization of a new endogenous endo-b-1,4-glucanase of Formosan subterranean termite (Coptotermes formosanus). Insect Biochemistry and Molecular Biology 41: 211-218.




DOI: http://dx.doi.org/10.13102/sociobiology.v59i3.541

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699