The Molecular Characterization and Gene Expressions of Trehalase in Bumblebee, Bombus lantschouensis (Hymenoptera: Apidae)

Authors

  • Jiamin Qin Chinese Academy of Agricultural Sciences
  • Feng Liu Apiculture Institute of Jiangxi Province
  • Jie Wu Chinese Academy of Agricultural Sciences
  • Shaoyu He Yunnan Agricultural University
  • Muhammad Imran The University of Poonch Rawalakot
  • Wen Lou Apiculture Institute of Jiangxi Province
  • Hongmei Li-Byarlay Central State University
  • Shudong Luo Chinese Academy of Agricultural Sciences

DOI:

https://doi.org/10.13102/sociobiology.v68i4.5443

Keywords:

Bombus lantschouensis, trehalase, sequence analysis, stress conditions, gene expression

Abstract

Trehalose provides the main energy source for the physiological activities of insects, especially in adverse conditions. Trehalase is the only enzyme that hydrolyzes trehalose, therefore it is important to clarify the distribution and expression of trehalase under adverse conditions such as high temperatures and starvation. Here, we have cloned the trehalase genes and investigated their expression in different tissues, at multiple development stages, and with the treatments of high temperature and starvation in Bombus lantschouensis, which is considered to be one of the most commercially viable native species in China. The results suggest that the membrane-bound (BlTre-2) cDNA has an open reading frame of 1986 nucleotides, which encodes a protein of 662 amino acids, and two putative transmembrane domains. qRT-PCR analysis indicated that BlTre-2 was expressed in 10 tissues and at nine development stages, with the highest expression in general in 30-day-old workers, and in ovarian tissue in particular. The expression of BlTre-1 for 15-day-old workers which were exposed to a pre-treatment of 45°C increased over the first 5 h and subsequently decreased over time. In contrast the expression of BlTre-2 consistently decreased over time. The highest expression levels of BlTre-1 and BlTre-2 were observed the newly emerged adult workers when starved for 16-20 h. These results indicate that BlTre-2 may be part of the carbohydrate metabolism of the bumblebee, and that BlTre-1 is a key gene regulating energy metabolism and providing trehalose when exposed to a high temperature. Both BlTre-1 and BlTre-2 may balance trehalose and provide energy when B. lantschouensis is starved.

Downloads

Download data is not yet available.

References

Ai, D., Cheng, S. H., Chang, H. T., Yang, T., Wang, G. R. & Yu, C. H. (2018). Gene cloning, prokaryotic expression, and biochemical characterization of a soluble Trehalase in Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). Journal of Insect Science, 22: 1-8. doi: 10.1093/jisesa/iey056.

Alumot, E., Lensky, Y. & Holstein, P. (1969). Sugars and trehalase in the reproductive organs and hemolymph of the queen and drone honey bees (Apis mellifica L. var. ligustica Spin.). Comparative Biochemistry and Physiology, 28(3): 1419-1425. doi: 10.1016/0010-406X(69)90579-9.

An, J. D., Huang, J. X., Shao, Y. Q., Zhang, S. W., Wang, B., Liu, X. Y., Wu, J. & Williams, P. H. (2014). The bumblebees of North China (Apidae, Bombus Latreille). Zootaxa, 3830: 001-089. doi: 10.11646/zootaxa.3830.1.1.

Argüelles, J. C. (2014). Why can’t vertebrates synthesize trehalose? Journal of Molecular Evolution. 79: 111-116. doi: 10.1007/s00239-014-9645-9.

Becker, A., Schloer, P., Steel, J. E. & Wegener, G. (1996). The regulation of trehalose metabolism in insects. Experientia, 52: 433-439. doi: 10.1007/BF01919312.

Brandt, N. R. & Huber, R. E. (1979). The localization of honey bee thorax trehalase. Canadian journal of biochemistry, 57(2): 145-154. doi: 10.1139/o79-018.

Chen, J., Tang, B., Chen, H. X., Yao, Q., Huang, X. F., Chen, J., Zhang, D. W. & Zhang, W. Q. (2010). Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference. PLoS One, 5: e10133. doi: 10.1371/journal.pone.0010133.

Chen, X., Feng, H., Shu, Z. L., Yao, K. B. & Wei, L. H. (2016). Isolation and expression analysis of a trehalase gene from white tip nematode. Journal of Nuclear Agricultural Sciences, 12: 2304-2311. doi: 10.11869/j.issn.100-8551. 2016. 12.2304.

Clegg, J. & Evans, D. (1961). Blood trehalose and flight metabolism in the blowfly. Science, 134: 54-55.

Crowe, J. H., Hoekstra, F. A. & Crowe, L. M. (1992). Anhydrobiosis. Annual Review of Physiology, 54: 579-599. doi: 10.1146/annurev.ph.54.030192.003051.

Du, Y., Ma, C. S., Zhao, Q. H., Ma, G. & Yang, H. P. (2007). Effects of heat stress on physiological and biochemical mechanisms of insects: a literature review. Acta Ecologica Sinica, 27: 1565-1572. doi: 10.3321/j.issn:1000-0933.2007.04.037.

Elbein, A. D., Pan, Y. T., Pastuszak, I. & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13: 17R-27R. doi: 10.1093/glycob/cwg047.

Forcella, M., Cardona, F., Goti, A., Parmeggiani, C., Cipolla, L., Gregori, M., Schirone, R., Fusi, P. & Parenti, P. (2010). A membrane-bound trehalase from Chironomus riparius larvae: purification and sensitivity to inhibition. Glycobiology, 20: 1186-1195. doi: 10.1093/glycob/cwq087.

Gu, J. H., Shao, Y., Zhang, C. W., Liu, Z. W. & Zhang, Y. J. (2009). Characterization of putative soluble and membrane-bound trehalases in a hemipteran insect, Nilaparvata lugens. Journal of Insect Physiology, 55: 997-1002. doi: 10.1016/j.jinsphys.2009.07.003.

Gunnarsson, B. & Federsel, L. M. (2014). Bumblebees in the city: abundance, species richness and diversity in two urban habitats. Journal of Insect Conservation, 18: 1185-1191. doi: 10.1007/s10841-014-9729-2.

Kamei, Y., Hasegawa, Y., Niimi, T., Yamashita, O. & Yaginuma, T. (2011). Trehalase-2 protein contributes to trehalase activity enhanced by diapausehormone in developing ovaries of the silkworm, Bombyx mori. Journal of Insect Physiology, l57: 608-613. doi: 10.1016/j. jinsphys.2010.10.001.

Lee, J. H., Saito, S., Mori, H., Nishimoto, M., Okuyama, M., Kim, D., Wongchawalit, J., Kimura, A. & Chiba, S. (2007). Molecular cloning of cDNA for trehalase from the European honeybee, Apis mellifera L., and its heterologous expression in Pichia pastoris. Bioscience, Biotechnology, and Biochemistry, 71: 2256-2265. doi: 10.1271/bbb.70239.

Li, J. L., Huang, J. X., Cai, W. Z., Zhao, Z. W., Peng, W. J. & Wu, J. (2010). The vitellogenin of bumblebee, Bombus hypocrita: studies on structural analysis of the cDNA and expression of the mRNA. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 180: 161-170. doi: 10.1007/s00360-009-0434-5.

Liu, X. J., Sun, Y. W., Cui, M., Ma, E. B. & Zhang, J. Z. (2016). Molecular characteristics and functional analysis of trehalase genes in Locusta migratoria. Scientia Agricultura Sinica, 49: 4375-4386. doi: 10.3864/j.issn.0578-1752.2016.22.01.

Livak, K. J. & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402-408. doi: 10.1006/meth.2001.1262.

Łopieńska-Biernat, E., Żółtowska, K., Zaobidna, E. A., Dmitryjuk, M. & Bąk, B. (2018). Developmental changes in gene expression and enzyme activities of anabolic and catabolic enzymes for storage carbohydrates in the honeybee, Apis mellifera. Insectes Sociaux, 65: 571-580. doi: 10.1007/s00040-018-0648-1.

Mitsumasu, K., Azuma, M., Niimi, T., Yamashita, O. & Yaginuma, T. (2005). Membrane-penetrating trehalase from silkworm Bombyx mori. molecular cloning and localization in larval midgut. Insect Molecular Biology, 14: 501-508. doi: 10.1111/j.1365-2583.2005.00581.x.

Mitsumasu, K., Kanamori, Y., Fujita, M., Iwata, K., Tanaka, D., Kikuta, S., Watanabe, M., Cornette, R., Okuda, T. & Kikawada, T. (2010). Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki. FEBS Journal, 277: 4215-4228. doi: 10.1111/j.1742-4658.2010.07811.x.

Nardelli, A., Vecchi, M., Mandrioli, M. & Manicardi, G. C. (2019). The evolutionary history and functional divergence of trehalase (treh) genes in insects. Frontiers in Physiology, 10: 62. doi: 10.3389/fphys.2019.00062.

Qin, J. M., Luo, S. D., Liao X. L., Huang J. X., He, S.Y. & Wu, J. (2015). Molecular cloning and expression analysis of a soluble trehalase gene Tre-1 in Bombus hypocrita. Scientia Agricultura Sinica, 48: 370-380. doi: 10.3864/j.issn.0578-1752.2015.02.17.

Santos, R., Alves, B. M., Rosas, O. R., David, M., Jose, R. M. F. & Katia, C. G. (2012). Gene identification and enzymatic properties of a membrane-bound trehalase from the ovary of Rhodnius prolixus. Archives of Insect Biochemistry and Physiology, 81: 199-213. doi: 10.1002/arch.21043.

Shen, Q. D., Yang, M. M., Xie, G. Q., Wang, H. J., Zhang, L., Qiu, L. Y., Wang, S. G. & Tang, B. (2017). Excess trehalose and glucose affects chitin metabolism in brown planthopper (Nilaparvata lugens). Journal of Asia-Pacific Entomology, 20: 449-455. doi: 10.1016/j.aspen.2017.03.001.

Shi, J. F., Xu, Q. Y., Sun, Q. K., Meng, Q. W., Mu, L. L., Guo, W. C. & Li, G. Q. (2016). Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochemistry and Molecular Biology, 77: 52-68. doi: 10.1016/j.ibmb.2016.07.012.

Shi, Z. K., Liu, X. J., Xu, Q. Y., Qin, Z., Wang, S., Zhang, F., Wang, S. G. & Tang, B. (2016). Two novel soluble trehalase genes cloned from Harmonia axyridis and regulation of the enzyme in a rapid changing temperature. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 198: 10-18. doi: 10.1016/j.cbpb.2016.03.002.

Shi, Z. K., Wang, S. G., Zhang, T., Cao, Y., Li, Y. & Li, C. (2019). Three novel trehalase genes from Harmonia axyridis (Coleoptera: Coccinellidae): cloning and regulation in response to rapid cold and re warming. 3 Biotech, 9: 321. doi: 10.1007/s13205-019-1839-9.

Shukla, E., Leena J. T., Bimalendu, B. N. & Sushama, M. G. (2014). Insect trehalase: Physiological significance and potential applications. Glycobiology, 25: 357-367. doi: 10.1093/ glycob/cwu125.

Shukla, E., Thorat, L., Bhavnani, V., Bendre, A. D., Pal, J.K., Nath, B.B. & Gaikwad, S.M. (2016). Molecular cloning and in silico studies of physiologically significant trehalase from Drosophila melanogaster. International Journal of Biological Macromolecules, 92: 282-292. doi: 10.1016/j.ijbiomac.2016.06.097.

Silva, M. C. P., Ribeiro, A. F., Terra, W. R. & Ferreira, C. (2009). Sequencing of Spodoptera frugiperda midgut trehalases and demonstration of secretion of soluble trehalase by midgut columnar cells. Insect Molecular Biology, 18: 769-784. doi: 10.1111/j.1365-2583.2009.00920.x.

Silva, M. C. P., Terra, W. R. & Ferreira, C. (2010). The catalytic and other residues essential for the activity of the midgut trehalase from Spodoptera frugiperda. Insect Biochemistry and Molecular Biology, 40: 733-741. doi: 10.1016/ j.ibmb.2010.07.006.

Su, Z. H., Ikeda, M., Sato, Y., Saito, H., Imai, K., Isobe, M. & Yamashita, O. (1994). Molecular characterization of ovary trehalase of the silkworm, Bombyx mori and its transcriptional activation by diapause hormone. Biochimica et Biophysica Acta, 1218: 366-374. doi: 10.1016/0167-4781(94)90190-2.

Takiguchi, M., Niini, T., Su, Z. H. & Yaginuma, T. (1992). Trehalase from male accessory gland of an insect, Tenebrio molitor cDNA sequencing and developmental profile of the gene expression. The Biochemical Journal, 288: 19-22. doi: 10.1016/0003-9861(92)90262-U.

Tan, Y. A., Xiao, L. B., Sun, Y., Zhao, J. & Bai, L. X. (2014). Molecular characterization of soluble and membrane-bound trehalases in the cotton mirid bug, Apolygus lucorum. Archives of Insect Biochemistry and Physiology, 86: 107-121. doi: 10.1002/arch.21166.

Tang, B., Chen, X. F., Liu, Y., Tian, H. G., Liu, J., Hu, J., Xu, W. H. & Zhang, W. Q. (2008). Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua. BMC Molecular Biology, 9: 51. doi: 10.1186/1471-2199-9-51.

Tang, B., Qin, Z., Shi, Z. K., Wang, S., Guo, X. J., Wang, S.G. & Zhang, F. (2014). Trehalase in Harmonia axyridis (Coleoptera: Coccinellidae): effects on beetle locomotory activity and the correlation with trehalose metabolism under starvation conditions. Applied Entomology and Zoology, 49: 255-264. doi: 10.1007/s13355-014-0244-4.

Tang, B., Wei, P., Chen, J., Wang, S. G. & Zhang, W. Q. (2012). Progress in gene features and functions of insect trehalases. Acta Entomologica Sinica, 55: 1315-1321. doi: 10.16380/j.kcxb.2012.11.008.

Tang, B., Wei, P., Zhao, L. N., Shi, Z. K., Shen, Q. D., Yang, M. M., Xie, G. Q. & Wang, S. G. (2016). Knockdown of five trehalase genes using RNA interference regulates the gene expression of the chitin biosynthesis pathways in Tribolium castaneum. BMC Biotechnology, 16: 67. doi: 10.1186/s12896-016-0297-2.

Tang, B., Yang, M. M., Shen, Q. D., Xu, Y. X., Wang, H. J. & Wang, S. G. (2017). Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 137: 81-90. doi: 10.1016/j.pestbp.2016.10.003.

Tang, B., Zhang, L., Xiong, X. P., Wang, H. J. & Wang, S. G. (2018). Advances in trehalose metabolism and its regulation of insect chitin synthesis. Scientia Agricultura Sinica, 4: 697-707. doi: 10.3864/j.issn.0578-1752.2018.04.009.

Tatun, N., Singtripop, T., Tungjitwitayakul, J. & Sakurai, S. (2008). Regulation of soluble and membrane-bound trehalase activity and expression of the enzyme in the larval midgut of the bamboo borer Omphisa fuscidentalis. Insect Biochemistry and Molecular Biology, 38: 788-795. doi: 10.1016/j.ibmb.2008.05.003.

Thompson, S. N. (2003). Trehalose – the insect ‘blood’ sugar. Advances In Insect Physiology: Insect Mechanics and Control, 31: 205-285. doi: 10.1016/S0065-2806(03)31004-5.

Tian, Y., Du, J., Li, S. W., Li, J. & Wang, S. (2016). Molecular cloning, characterization and expression analysis of trehalase genes in the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Acta Entomologica Sinica, 59: 602-612. doi: 10.16380/j.kcxb.2016.06.00.

Velthuis, H. H. W. & van Doom, A. (2006). A century of advances in bumble bee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie, 37: 421-451. doi: 10.1051/apido: 2006019.

Wang, D. Y., Ru, Y. T., Wang, Y., Ma, Y. Y., Na, S., Sun, L. Z., Jiang, Y. R. & Qin, L. (2018). Gene expression patterns and activities of trehalases in Antheraea pernyi (Lepidoptera: Saturniidae) pupae during diapause and diapause termination. Acta Entomologica Sinica, 7: 784-794. doi: 10. 16380 /j. kcxb. 2018. 07. 004.

Wang, J., He, W. B., Su, Y. L., Bing, X. L. & Liu, S. S. (2014). Molecular characterization of soluble and membrane-bound trehalases of the whitefly, Bemisia tabaci. Archives of Insect Biochemistry and Physiology, 85: 216-233. doi: 10.1002/arch.21155.

Williams, P.H. & Osborne, J. L. (2009). Bumblebee vulnerability and conservation world-wide. Apidologie, 40: 367-387. doi: 10.1051/apido/2009025.

Wyatt, G. R. (1967). The biochemistry of sugars and polysaccharides in insects. Advances in Insect Physiology, 4: 287-360. doi: 10.1016/S0065-2806(08)60210-6.

Xie, Y. F., Yang, W. J., Dou, W. & Wang, J. J. (2013). Characterization of the cDNA encoding membrane-bound trehalase, its expression and enzyme activity in Bactrocera dorsalis (Diptera: Tephritidae). Florida Entomologist, 96: 1233-1242. doi: 10.1653/024.096.0401.

Yaginuma, T., Mizuno, T., Mizuno, C., Ikeda, M., Wada, T., Hattori, K., Yamashita, O. & Happ, G. M. (1996). Trehalase in the spermatophore from the bean-shaped accessory gland of the male mealworm beetle, Tenebrio molitor: purification, kinetic properties and localization of the enzyme. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 166: 1-10. doi: 10.1007/BF00264633.

Yang, F., Chen, S., Dai, Z. M., Chen, D. F., Duan, R. B., Wang, H. L., Jia, S. N. & Yang, W. J. (2013). Regulation of trehalase expression inhibits apoptosis in diapause cysts of Artemia. The Biochemical Journal, 456: 185-194. doi: 10.1042/BJ20131020.

Yasugi, T., Yamada, T. & Nishimura, T. (2017). Adaptation to dietary conditions by trehalose metabolism in Drosophila. Scientific Reports, 7: 1619. doi: 10.1038/s41598-017-01754-9.

Youngjin, P. & Yonggyun, K. (2017). Identification of a hypertrehalosemic factor in Spodoptera exigua. Archives of Insect Biochemistry and Physiology, 95: e21386. doi: 10.1002/arch.21386.

Yu, C. H., Huang, Y., Lin, R. H., Jiang, H., Wang, W. T. & Pei, L. (2013). Comparative tests of soluble trehalase activities of five insects. Plant Protection, 39: 5-9. doi: 10.3969/j.issn. 5029-1542.2013.04.002.

Zhang, L., Qiu, L. Y., Yang, H. L., Wang, H. J., Zhou, M., Wang, S. G. & Tang, B. (2017). Study on the effect of wing bud chitin metabolism and its developmental network genes in the brown planthopper, Nilaparvata lugens, by knockdown of TRE gene. Frontiers in Physiology, 8: 750. doi: 10.3389/fphys.2017.00750.

Zhang, Q., Lu, D. H., Pu, J., Wu, M. & Han, Z. J. (2012). Cloning and RNA interference effects of trehalase genes in Laodelphax striatellus (Homoptera: Delphacidae). Acta Entomologica Sinica, 8: 911-920. doi: 10.16380/j.kcxb.2012. 08.002.

Zhao, L. N., Yang, M. M., Shen, Q. D., Liu, X. J., Shi, Z. K., Wang, S. G. & Tang, B. (2016). Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference. Scientific Reports, 6: 27841. doi: 10.1038/srep27841.

Zou, Q., Wei, P., Xu, Q., Zheng, H. Z., Tang, B. & Wang, S. G. (2013). cDNA cloning and characterization of two trehalases from Spodoptera litura (Lepidoptera: Noctuidade). Genetics and Molecular Research, 12: 901-915. doi: 10.4238/2013. April.2.7

Downloads

Published

2021-11-19

How to Cite

Qin, J., Liu, F., Wu, J., He, S., Imran, M., Lou, W., Li-Byarlay, H., & Luo, S. (2021). The Molecular Characterization and Gene Expressions of Trehalase in Bumblebee, Bombus lantschouensis (Hymenoptera: Apidae). Sociobiology, 68(4), e5443. https://doi.org/10.13102/sociobiology.v68i4.5443

Issue

Section

Research Article - Bees