Potential Niche Modeling Distribution and Wing Geometric Morphometrics of Apis mellifera In The Brazilian Pantanal





Africanized bees, Beekeeper, Predictive niche, Wetland.


The ecological niche models can be important for biogeographic patterns and processes and geometric morphometrics involves identifying changes that have occurred and comparing them to other specimens from different places and/or environmental conditions, assessing whether the environment is influencing such change. The present work aimed to verify the potential model of distribution for Apis mellifera and analyze if there is variation in the geometric morphometrics in wing venation in the Pantanal. We followed the hypothesis that there is variation in the geometric morphometrics of wings and that the geographically closest groups are more similar. For niche modeling, 44 geographical points and 19 bioclimatic variables were used. For morphometrics, twenty-two anatomical landmarks were plotted at the intersection of the veins. The X and Y coordinates were standardized through Procrustes superimposition, and PCA and MANOVA tests were performed. The predictive model indicated that the center of the Pantanal plain shows the greater probability of occurrence for the species. The most important bioclimatic variables were: average temperature in the rainiest quarter (84%) and average annual temperature (72%). Morphometric analyzes indicate that there was variation between the most distant geographic points. The slight variation between some closely located points in the Pantanal can be related to individual reflections of colonies from other points, since the species has great dispersion capacity. Thus, the distribution of A. mellifera in the Pantanal is possibly related to temperature also accompanied by human occupation and the geometric morphometrics of its wings reflecting aspects of dispersion and population dynamics in the Brazilian Pantanal.

Author Biography

Rodrigo Aranda, Universidade Federal de Rondonópolis

Departamento de Biologia


Adams, D.C., Rohlf, F.J. & Slice, D.E. (2004). Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71: 5-16. doi: 10.1080/11250000409356545

Almeida, A.M. & Reis, V.D. (2016). Diagnóstico da apicultura e da meliponicultura em comunidades ribeirinhas do Pantanal. Corumbá: Embrapa Pantanal, 36 p

Aranda, R. & Aoki, C. (2018). Diversity and effect of historical inundation on bee and wasp (Hymenoptera: Apoidea, Vespoidea) communities in thw Brazilian Pantanal. Journal of Insect Conservation, 22: 581-591. doi: 10.1007/s10841- 018-0087-3

Banaszak-Cibicka, W, Fliszkiewicz M, Langowska A. & Żmihorski M. (2017). Body size and wing asymmetry in bees along an urbanization gradient. Apidologie, 49: 297-306. doi: 10.1007/s13592-017-0554-y

Braunisch, V. Bollmann, K. Graf, R.F. & Hirzel, A.H. (2008). Living on the edge- Modelling habitat suitability for species at the edge of their fundamental niche. Ecological Modelling, 214: 153-167. doi: 10.1016/j.ecolmodel.2008.02.001

Cardini, A., Jansson, A.U. & Elton, S. (2007). A geometric morphometric approach to the study of ecogeographical and clinal variation in vervet monkeys. Journal of Biogeography, 34: 1663-1678. doi: 10.1111/j.1365-2699.2007.01731.x

Carneiro, L., Aguiar, C., Aguiar, W., Aniceto, E., Nunes, L. & Ferreira, V. (2019). Morphometric variability among populations of Euglossa cordata (Hymenoptera: Apidae: Euglossini) from different phytophysiognomies. Sociobiology, 66: 575-581. doi: 10.13102/sociobiology.v66i4.4675

Carvalho, C.A.L., Santos, W.D.S., Nunes, L.A., Souza, B.D.A., Zilse, G.D.C. & Alves, R.D.O. (2011). Offspring analysis in a polygyne colony of Melipona scutellaris (Hymenoptera: Apidae) by means of morphometric analyses. Sociobiology, 57: 347-354.

Carvalho, N., Raizer, J., de Aquino Ribas, A.C. & Delatorre, M. (2012). Abelhas evitam flores com modelos artificiais de aranhas. Ecología Austral, 22: 211-214.

Combey, R., Quandahor, P. & Mensah, B.A. (2018). Geometric morphometrics captures possible segregation occurring within subspecies Apis mellifera adansonii in three agro ecological zones. Annals of Biological Research, 9: 31-43.

Dryden, I.L. & Mardia, K.V. (1998). Statistical Shape Analysis. Chichester: Wile, 347 p

Francoy, T.M., Grassi, M.L., Imperatriz-Fonseca, V.L., de Jesús May-Itzá, W. & Quezada-Euán, J.J.G. (2011). Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie, 42: 499-507. doi: 10.1007/s13592-011-0013-0

Francoy, T.M., Wittmann, D., Drauschke, M., Müller, S., Steinhage, V., Bezerra-Laure, M.A., Jong, D.D. & Gonçalvez, L.S. (2008). Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie, 39: 1-7. doi: 10.1051/apido:2008028

Francoy, T.M., Wittmann, D., Steinhage, V., Drauschke, M., Müller, S., Cunha, D.R., Nascimento, A.M., Figueiredo, V.L.C., Simões, Z.L.P., Jong, D., Arias, M.C. & Gonçalves, L.S. (2009). Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization. Genetic Molecular Research, 8: 709-717. doi: 10.4238/vol8-2kerr019

Giovanelli, J.G., Haddad, C.F. & Alexandrino, J. (2008) Predicting the potencial distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biological Invasions, 10: 585-590. doi: 10.1007/s10530-007-9154-5

Guisan, A. & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8: 993-1009. doi: 10.1007/978-3-030-20389-4

Gumiel, M., Catalá, S., Noireau, F. Rojas de Arias, A., Garcia, A. & Dujardin, J.P. (2003). Wing geometry in Triatoma infestans (Klug) and T. melanosoma Martinez, Olmedo & Carcavallo (Hemiptera: Reduviidae). Systematic Entomology, 28: 173- 179. doi: 10.1046/j.1365-3113.2003.00206.x

Hammer, Ø., Harper, D.A. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4: 4-9.

Henriques, D., Chávez-Galarza, J., Teixeira, J.S.G., Ferreira, H., Neves, C.J., Francoy, T.M. & Pinto, M.A. (2020). Wing geometric morphometrics of workers and drones and single nucleotide polymorphisms provide similar genetic structure in the iberian honey bee (Apis mellifera iberiensis). Insects, 11: 1-13. doi: 10.3390/insects11020089

Hijmans, R. J., Guarino, L., Bussink, C., Mathur, P., Cruz, M., Berrantes, I. & Rojas, E. (2012). DIVA-GIS: A geographic information system for the analysis of species distribution data. Version 7.

Hoffmann, A.A. & Shirriffs, J. (2002). Geographic variation for wing shape in Drosophila serrata. Evolution, 56: 1068-1073. doi: 10.1111/j.0014-3820.2002.tb01418.x

Hoffmann, A.A., Woods, R.E., Collins, E., Wallin, K., White, A. & McKenzie, J.A. (2005). Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Australian Journal of Entomology, 44: 233-243. doi: 10.1111/j.1440-6055.2005.00469.x

Hutchinson, G.E. (1978). An Introduction to Population Ecology. New Haven: Yale University Press, 378 p

Jungers, W.L., Falsetti, A.B. & Wall, C.E. (1995). Shape, relative size, and size-adjustments in morphometrics. American Journal of Physical Anthropology, 38: 137-161. doi: 10.1002/ ajpa.1330380608

Kerr, W.E. (1967) The history of introduction of African Bees to Brazil. South African Bee Journal, 39: 3-5.

Komatsu, T., Maruyama, M., Hattori, M., & Itino, T. (2018). Morphological characteristics reflect food sources and degree of host ant specificity in four myrmecophilus crickets. Insectes Sociaux, 65: 47-57. doi: 10.1007/s00040-017-0586-3

Le Conte, Y. & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27: 499-510. doi: 10.20506/RST.27.2.1819

Lindauer, M. & Kerr, W.E. (1960). Communication between the workers of stingless bees. Bee Word, 41: 29-41. doi: 10.10 80/0005772X.1960.11095309

Longo, L. Galbiati, C. & Souza, C.A. (2019). Pantanal Mato-Grossense: Aspectos socioeconômicos da apicultura e seu avanço em seis municípios na baixada cuiabana. Revista Equador, 8: 101-118.

Loureiro, E.M. & Galbiati, C. (2013). Evaluation of the influence of seasonality and landscape on the physicochemical characteristics of propolis. Food Science and Technology, 33: 790-795. doi: 10.1590/S0101-20612013000400027

Marques, D.K.S, Silva, J.C.B., Oliveira, M.D., Matthiensen, A., Iede E.T., Lisita, F.O., Gerhard, P., Santos, S.A., Penteado, S.R.C., Salis, S.M., Abreu, U.G.P. & Reis, V.D.A. (2019). Alien species: economical use, control and impact reduction. In: Vilella G.F., Bentes, M.P.M., Oliveira, Y.M.M., Marques, D.K.S. & Silva, J.C.B. (Eds), Life on Land (pp. 95-104) Brasilia, Embrapa

Mercante, M.A., Rodrigues, S.C. & Ross, J.L.S. (2011). Geomorphology and habitat diversity in the Pantanal. Brazilian Journal of Biology, 71: 233-240. doi: 10.1590/S1519-698420 11000200002

Miguel, I., Baylac, M., Iriondo, M., Manzano, C., Garnery, L. & Estonba, A. (2011). Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie, 42: 150-161. doi: 10.1051/apido/2010048

Nunes, L.A., Araújo, E.D.D., Marchini, L.C. & Moreti, A.C. (2012). Variation morphogeometrics of Africanized honey bees (Apis mellifera) in Brazil. Iheringia. Série Zoologia, 102: 321-326. doi: 10.1590/S0073-47212012005000002.

Nunes, L.A., Araújo, E.D. & Marchini, L.C. (2015) Fluctuating asymmetry in Apis mellifera (Hymenoptera: Apidae) as bioindicator of anthropogenic environments. Revista de Biologia Tropical, 63: 673-682.

Olivier, S. & Aranda, R. (2018). Are anatomical measurements useful for interspecific and sexual differentiation of Temnomastax (Orthoptera: Eumastacidae) species? Zoological Science, 35: 268-275. doi: 10.2108/zs170088

Peel, M.C., Finlayson, B.L. & McMahon, T.A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology Earth Systematic Science, 11: 1633-1644.

Pretorius, E. (2005). Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera – A case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae). Australian Journal of Entomology, 44: 113-121. doi: 10.1111/j.1440-6055.2005.00464.x

Pott, A. & Pott, V.G. (1986). Inventário da flora apícola do Pantanal em Mato Grosso do Sul. Embrapa, 18 p

Pianka, E.R. (1981) Competition and niche theory. Theoretical Ecology, 8: 167-196.

Reis, V.D. & Comastri-Filho, J.A. (2003). Importância da Apicultura no Pantanal Sul-Mato-Grossense. Corumbá: Embrapa Pantanal, 22 p

Ribeiro, M., Aguiar, W.M., Nunes, L.A. & Carneiro, L.D.S. (2019). Morphometric changes in three species of Euglossini (Hymenoptera: Apidae) in response to landscape structure. Sociobiology, 66: 339-347. doi: 10.13102/sociobiology.v66i2.3779

Richtsmeier, J.T., Deleon, V.B. & Lele, S.R. (2002). The promise of geometric morphomrtics. Physical Anthropology, 45: 63-91. doi: 10.1002/ajpa.10174

Roggero, A. & Passerin d’Entrèves, P. (2005). Geometric morphometric analysis of wings variation between two populations of the Scythris obscurella species-group: geographic or interspecific differences? (Lepidoptera: Scythrididae). Shilap Revista de Lepidopterologia, 33: 101-112.

Sadeghi, S., Adriaens, D. & Dumont, H.J. (2009). Geometric morphometric analysis of wing shape variation in ten european populations of Calopteryx splendens (Harris, 1782) (Zygoptera: Odonata). Odonatologica, 38: 341-357.

Sakagami, S.F., Laroca, S. & Moure, J.S. (1967). Wild bee bioncenotics in São José dos Pinhais (PR), Shouth Brazil. Preliminary Report. Hokkaido University Collection of Scholarly and Academic Papers, 16: 253-291.

Salas-Lopez, A., Violle, C., Mallia, L. & Orivel, J. (2017). Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana. Insect Conservation and Diversity, 11: 162-173. doi: 10.1111/icad.12248

Salis, S.M., Jesus, E.M de, Reis, V.D.A., Almeida, A.M. & Padilha, D.R.C. (2015). Calendário floral de plantas melíferas nativas da Borda Oeste do Pantanal no Estado do Mato Grosso do Sul. Pesquisa Agropecuária Brasileira, 50: 861-870. doi: 10.1590/S0100-204X2015001000001

Silva, M.P., Mauro, R., Mourão, G. & Coutinho, M. (2000). Distribuição e quantificação de classes de vegetação do Pantanal através de levantamento aéreo. Brazilian Journal of Botany, 23: 143-152. doi: 10.1590/S0100-84042000000200004.

Souza, C.S., de Alcântara, D.M.C., Dargas, J.H.F., Stefanello, T.H., de Barros, M.F., de Souza, E.B. & Neyra, M.O.C. (2016). Composição e comportamento de visitantes florais de duas espécies herbáceas no Chaco úmido brasileiro. Entomotropica, 31: 64-75.

Torne-Noguera, A., Rodrigo, A., Arnan, X., Osorio, S., Barril-Graells, H., da Rocha-Filho, L C. & Bosch, J. (2014).

Determinants of spatial distribution in a bee community: nesting resources, flower resources, and body size. Plos One, 9: 1-10. doi: 10.1371/journal.pone.0097255

Vital, M.V.C., Hepburn, R., Radloff, S. & Fuchs, S. (2012). Geographic distribution of Africanized honeybees (Apis mellifera) reflects niche characteristics of ancestral African subspecies. Brazilian Journal of Nature Conservation, 10: 184-190.

Zelditch, M.L., Swiderski, D.L. & Sheets, H.D. (2012). Geometric morphometrics for biologists: a primer. Massachusetts: Academic Press. 488 p




How to Cite

Peil, A. C., & Aranda, R. (2021). Potential Niche Modeling Distribution and Wing Geometric Morphometrics of Apis mellifera In The Brazilian Pantanal. Sociobiology, 68(2), e5629. https://doi.org/10.13102/sociobiology.v68i2.5629



Research Article - Bees

Most read articles by the same author(s)