Canopy and Litter Cover Do Not Alter Diaspore Removal by Ants in the Cerrado

Mariana Azevedo Rabelo, Marina Acero Angotti, Graziele Santiago Silva, Ariel da Cruz Reis, Carla Rodrigues Ribas

Abstract


Diaspore removal by ants is a crucial stage for successful myrmecochory and can be directly or indirectly affected by natural or anthropic changes to environments. Among the consequences of such changes is variation in habitat attributes, such as changes in conditions and resources and, consequently, decreased diaspore removal or even the loss of this ecological function. The aim of this study was to assess whether canopy and litter cover affect diaspore removal by ants in the Cerrado. We considered canopy and litter cover as proxies of humidity and temperature and evaluated whether changes in these environmental conditions could affect diaspore removal by ants. We hypothesized that the greater the canopy and litter cover (higher humidity and lower temperature), the greater the number of diaspores removed by ants. We tested this hypothesis by establishing three classes of cover for each proxy: low, intermediate, and high. We placed artificial diaspores under each cover class and quantified the number of diaspores removed. We found that variation in canopy and litter cover did not affect the number of diaspores removed by ants in areas of cerrado sensu stricto. Variation in habitat attributes in natural environments were less important for diaspore removal than in modified areas. Our results indicate that understanding the processes and habitat atributes involved in diaspore removal by ants is important for conserving the Cerrado.

Keywords


temperature; humidity; vegetation cover; diaspore removal; myrmecochory; conservation

Full Text:

PDF

References


Ahuatzin, D.A., Corro, E.R., Jaimes, A.A., Feitosa, M.R., Ribeiro, M.C., Acosta, J.C.L., Coates, R. & Dáttilo, W. (2019). Forest cover drives leaf litter ant diversity in primary rainforest remnants within human modified tropical landscapes. Biodiversity and Conservation, 28: 1091-1107. doi: 10.1007/s10531-019-01712-z

Andersen, A.N. (2018). Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. Journal of Animal Ecology, 88: 350-362. doi: 10.1111/1365-2656.12907

Andersen, A.N. & Morrison, S.C. (1998). Myrmecochory in Australia’s seasonal tropics: effects of disturbance on distance dispersal. Australian Journal of Ecology, 23: 483-491. doi: 10.1111/j.1442-9993.1998.tb00756.x

Angotti, M.A., Rabello, A.M., Santiago, G.S. & Ribas, C.R. (2018). Seed removal by ants in Brazilian savanna: optimizing fieldwork. Sociobiology, 65: 155-161. doi: 10.13102/sociobiology. v65i2.1938

Anjos, D.V., Leal, L.C., Jordano P. & Del-Claro K. (2020). Ants as diaspore removers of non-myrmecochorous plants: a meta-analysis. Oikos, 00: 1-12, doi: 10.1111/oik.06940

Batisda, F. & Talavera, S. (2002). Temporal and spatial patterns of seed dispersal in two Cistus species (Cistaceae). Annals of Botany, 89: 426-434. doi: 10.1093/aob/mcf065

Beaumont, K.P., Mackay, D.A., Whalen, M.A., (2009). Combining distances of ballistic and myrmecochorous seed dispersal in Adriana quadripartita (Euphorbiaceae). Acta Oecologica, 35, 429-436. doi: 10.1016/j.actao.2009.01.005.

Bieber, A.G.D., Silva, P.S.D., Sendoya, S.F. & Oliveira, P.S. (2014). Assessing the impact of deforestation of the Atlantic Rainforest on ant-fruit interactions: A field experiment using synthetic fruits. Plos One, 9: 1-5. doi: 10.1371/journal.pone. 0090369.

Cardoso, D.C. & Schoereder, J.H. (2014). Biotic and abiotic factors shaping ant (Hymenoptera: Formicidae) assemblages in brazilian coastal sand dunes: The case of Restinga in Santa Catarina. Florida Entomologist, 97: 1443-1450. doi: 10.1653/024.097.0419

Christianini, A.V., Mayhé-Nunes, A.J. & Oliveira, P. S. (2012). Exploitation of fallen diaspores by ants: are there ant–plant partner choices? Biotropica, 44: 360-367. doi:10.1111/j.1744-7429.2011.00822.x

Christianini, A.V., Mayhé-Nunes, A.J. & Oliveira, P.S. (2007). The role of ants in the removal of non-myrmecochorous diaspores and seed germination in a neotropical savanna. Journal of Tropical Ecology, 23: 343-351. doi: 10.1017/S0266467407004087

Crawley, M.J., (2013). The R book. Wiley, Chichester. Del Toro, I. & Ribbons, R.R. (2019). Variation in ant-mediated seed dispersal along elevation gradients. PeerJ, 7:e6686. doi: 10.7717/peerj.6686.

Del Toro, I. & Ribbons, R.R. (2019). Variation in ant-mediated seed dispersal along elevation gradients. PeerJ, 7:e6686. doi: 10.7717/peerj.6686.

Farji-Brener, A. G., Berrantes, G., Ruggiero, A. (2004). Environmental rugosity, body size and access to food: a test of the size-grain hypothesis in tropical litter ants. Oikos, 104: 165-171. doi: 10.1111/j.0030-1299.2004.12740.

Fitzpatrick, G., Lanan, M.C. & Bronstein, J.L. (2014). Thermal tolerance affects mutualist attendance in an ant–plant protection mutualism. Oecologia, 176: 129138. doi: 10.1007/s00442-014-3005-8

Gallegos, S.C., Hensen, I., Schleuning, M. (2014). Secondary dispersal by ants promotes forest regeneration after deforestation. Journal of Ecology, 102: 659-666. doi: 10.11 11/1365-2745.12226

Gibb, H. & Parr, C.L. (2010). How does habitat complexity affect ant foraging success? A test using functional measures on three continents. Oecologia, 164: 1061-1073. doi: 10.1007/s00442-010-1703-4

Gómez, C. & Espadaler, X. (2013). An update of the world survey of myrmecochorous dispersal distances. Ecography, 36: 1193-1201. doi: 10.1111/j.1600-0587.2013.00289.x

Hemmings, Z. & Andrew, N. R. (2018). Effects of microclimate and species identity on body temperature and thermal tolerance of ants (Hymenoptera: Formicidae). Austral Entomology. doi: 10.1111/aen.12215

Jardim, C.H. & Moura, F.P. (2018). Variações dos totais de chuvas e temperatura do ar na bacia do rio pandeiros, norte do Estado de Minas Gerais – Brasil: Articulação com fatores de diferentes níveis escalares em área de transição climática de Cerrado para semiárido. Revista Brasileira de Climatologia, 172-189. doi: 10.5380/abclima.vli0.61013

Kaspari, M., Ward, P.S. &Yuan, M. (2004). Energy gradients and the geographic distribution of local ant diversity. Oecologia, 140: 407-413. doi: 10.1007/s00442-004-1607-2

Leal, L.C., Andersen, N.A. & Leal, I.R. (2014). Anthropogenic disturbance reduces seed dispersal services for myrmecochorous plants in the Brazilian Caatinga. Oecologia, 174: 173-181. doi: 10.1007/s00442-013-2740-6.

Lengyel, S., Gove, A.D., Latimer, A.M., Majer, J.D. & Dunn, R.R. (2009). Ants sow the seeds of global diversification in flowering plants. PLoS ONE, 4: e5480. doi:10.1371/journal.pone.0005480

Lengyel, S., Gove, A.D., Latimer, A.M., Majer, J.D., Dunn, R.R., (2010). Convergent evolution of seed dispersal by ants, and phylogeny and biogeography in flowering plants: A global survey. Perspectives in Plant Ecology, Evolution and Systematics, 12: 43-55. doi:10.1016/j.ppees.2009.08.001

Levings, S.C. & Franks, N.R. (1982). Patterns of nested dispersion in a tropical ground ant community. Ecology, 63: 338-344. doi: 10.2307/1938951

Magalhães, V.B., Espiríto Santo, N.B., Salles, L.F.P., Soares Jr., H. & Oliveira, P.S. (2018). Secondary seed dispersal by ants in Neotropical cerrado savanna: species-specific effects on seeds and seedlings of Siparuna guianensis (Siparunaceae). Ecological Entomology, 43: 665-674. doi: 10.1111/een.12640

Neves, F.S., Queiroz-Dantas, K.S., Rocha, W.D., Delabie, J.H.C. (2013). Ants of three adjacent habitats of a transition region between the Cerrado and Caatinga biomes: The effects of heterogeneity and variation in canopy cover. Neotropical Entomology, 42: 258-268. doi: 10.1007/s13744-013-0123-7

Nunes, Y.R.F., Azevedo, I.F.P., Neves, W.V., Veloso, M.D., Souza, R.A. & Fernandes, G.W. (2009). Pandeiros: O Pantanal Mineiro. MG Biota, 2(2): 4–17.

Oliveira, F. M., Andersen, A. N., Arnan, X., Ribeiro-Neto, J. D., Arcoverde, G. B., & Leal, I. R. (2019). Effects of increasing aridity and chronic anthropogenic disturbance on seed dispersal by ants in Brazilian Caatinga. Journal of Animal Ecology, 88: 870-880. doi: 10.1111/1365-2656.12979

Oliveira-Filho, A.T. & Ratter, J.A. (2002). Vegetation physiognomies and the woody flora of the cerrado biome. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna (ed. by P. S.Oliveira and R. J. Marquis), pp. 91–120. Columbia University Press, New York, New York.

Oliver, I., Dorrough, J., Doherty, H. & Andrew, N.R. (2016). Additive and synergistic effects of land cover, land use and climate on insect biodiversity. Landscape Ecology, 31: 2415-2431. doi: 10.1007/s10980-016-0411-9

Pacheco, R. & Vasconcelos, H.L. (2012). Habitat diversity enhances ant diversity in a naturally heterogeneous Brazilian landscape. Biodiversity Conservation, 21: 797-809. doi: 10.1007/ s10531-011-0221-y

Palfi, Z., Spooner, P.G. & Robinson, W. (2017). Seed dispersal distances by ants increase in response to anthropogenic disturbances in australian roadside environments. Frontiers in Ecology and Evolution, 5: 132. doi: 10.3389/fevo.2017.00132

Passos, L. & Oliveira, O.S. (2003). Interactions between ants, fruits and seeds in a restinga forest in southeastern Brazil. Journal of Tropical Ecology, 19: 261-270. doi: 10.1017/S026 6467403003298

Philpott, S.M. & Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31: 369. doi: 10.1111/j.1365-2311.2006.00793.x

Pizo, M.A. & Oliveira, P.S. (2001). Size and lipid content of nonmyrmecochorous diaspores: Effects on the interaction with litter-foraging ants in the Atlantic rain forest of Brazil. Plant Ecology, 157: 37-52. doi: 10.1023/A:1013735305100

Queiroz, A.C.M., Ribas, C.R. & França, F.M. (2013). Microhabitat Characteristics That Regulate Ant Richness Patterns: The Importance of Leaf Litter for Epigaeic Ants. Sociobiology, 60: 367-373. doi: 10.13102/sociobiology.v60i4.367-373

Queiroz, A.C.M., Rabello, A.M., Braga, D. L., Santiago, G.S., Zurlo, L.F., Philpott, S.M. & Ribas, C.R. (2017). Cerrado vegetation types determine how land use impacts ant biodiversity. Biodiversity and Conservation, 29: 2017-2034. doi: 0.1007/s10531-017-1379-8

Rabello, A. M., Queiroz, A. C., Lasmar, C. J., Cuissi, R. G., Canedo-Júnior, E. O., Schmidt, F. A. & Ribas, C. R. (2015). When is the best period to sample ants in tropical areas impacted by mining and in rehabilitation process? Insectes Sociaux, 62: 227-236.

Rabello, A.M., Parr, C.L., Queiroz, A.C.M., Braga, D.L., Santiago, G.S. & Ribas, C.R., (2018). Habitat attribute similarities reduce impacts of land-use conversion on seed removal. Biotropica, 50: 39-49. doi: 10.1111/btp.12506

Raimundo, R.L.G., Guimarães, P. G., Almeida-Neto, M. & Pizo, M. A. (2004). The influence of fruit morphology and habitat structure on ant-seed interactions: A study with artificial fruits. Sociobiology, 44: 1-10.

Ribeiro, J.F. & Walter, B.M.T. (1998). Fitofisionomias do bioma Cerrado. In:_Cerrado: ambiente e flora. Embrapa CPAC, Editors: Sueli Matiko Sano, Semíramis Pedrosa de Almeida, 85-16 p.

R Development Core Team 2015. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rocha-Ortega, M., Bartimachi, A., Neves, J., Bruna E.M. & Vasconcelos H.L. (2017). Seed removal patterns of pioneer trees in an agricultural landscape. Plant Ecology, 218: 737-748. doi: 10.1007/s11258-017-0725-y

Roeder, K.A., Roder, D. V. & Kapari, M. (2018). The role of temperature in competition and persistence of an invaded ant assemblage. Ecological Entomology, 43: 774-781. doi: 10.1111/een.12663

Santana, F.D., Cazetta, E. & Delabie, J.H.C. (2013). Interactions between ants and non-myrmecochorus diaspores in a tropical wet forest in southern Bahia, Brazil. Journal of Tropical Ecology, 29: 71-80. doi: 10.1017/S0266467412000715

Yanoviak, S. & Kaspari, M. (2000). Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos, 89: 259-266.

Zelikova, T.J. & Breed, M.D. (2008) Effects of habitat disturbance on ant community composition and seed dispersal by ants in a tropical dry forest in Costa Rica. Journal of Tropical Ecology, 24: 309-316. doi: 10.1017/S0266467408004999

Warren II, R.J., Giladi, I & Bradford, M.A. (2012). Environmental heterogeneity and interspecific interactions influence nest occupancy by key seed-dispersing ants. Environmental Entomology, 41: 463-468. doi: 10.1603/EN12027

Weiser, M.D., Sanders, N.J., Agosti, D., et al. (2010). Canopy and litter ant assemblages share similar climate–species density relationships. Biology Letters, 6: 769-772. doi: 10.1098/rsbl. 2010.0151




DOI: http://dx.doi.org/10.13102/sociobiology.v67i4.5658

Refbacks

  • There are currently no refbacks.


JOURNAL METRICS

 

JCR Impact Factor (2019): 0.690

JCR 5-year Impact Factor (2019): 0.846

Google Scholar h5-index (Insects and Arthropods journals): 12 

Scimago h-index (whole journal circulation period): 37         

Scopus CiteScore (2016-2019): 0.90

Mean time for editorial decision (2020): 78 days

Mean time for article publication (2020): 171 days

 

Sociobiology is indexed in the following databases: