Nesting Biology, Sexual Dimorphism, and Populational Morphometric Variation in Podium denticulatum F. Smith, 1856 (Hymenoptera: Sphecidae)

Luci Shibata, Mariana Marchi Santoni, Vinicius de Oliveira Silva, Marco Antonio Del Lama


Podium denticulatum occurs from Mexico to southern Brazil, including northeastern Argentina. Females use pre-existing cavities to build nests, consisting of cells separated by walls of mud and resin and massively provisioned with paralyzed cockroaches. Trap nests were disposed in three localities in the state of São Paulo, Brazil (Araras, São Carlos, Rifaina), resulting in the collection of 201 nests from December/2003 to June/2007. The founding nests were brought to the laboratory, opened and the pupae transferred to identified vials until the emergence of the adults, when they were then weighed, sexed and stored at -20ºC. The nesting activity was seasonal, with a higher number of nests in the warm and rainy season of the year. The number of constructed cells ranged from one to nine per nest. The emergence rate of adults in the 716 brood cells was 74%, with homogeneous distribution of mortality by egg, larva and pupa stages. This mortality was partly due to parasitism observed in 39% of nests, predominantly by Melittobia sp. and rarely by Diptera (Tachinidae). A 1:1 sex ratio was observed among the newly emerged adults of each locality analyzed. Strong sexual dimorphism was characterized by linear measurements of wings and body mass, with females and males showing a mass between 27-116 mg and 14-70 mg, respectively. The geometric morphometry confirmed this dimorphism and revealed significant variation of wing size and shape among individuals of the analyzed populations, a result that deserves subsequent studies to point out the factors that account for this differentiation.


geometric morphometrics; sexual dimorphism; sex ratio; trap-nests, solitary wasps

Full Text:



Assis, J.M.F. & Camillo, E. (1997). Diversidade, sazonalidade e aspectos biológicos de vespas solitárias (Hymenoptera, Sphecidae, Vespidae) em ninhos armadilhas na região de Ituiutaba, MG. Anais da Sociedade Entomológica do Brasil, 26: 335-347.

Ayres, M., Ayres Jr, M., Ayres, D.L., & Santos, A.S. (2007). BioEstat 5.0: Aplicações estatísticas nas áreas das ciências biológicas e médicas. Belém: Sociedade Civil Mamirauá, 364 p

Blanckenhorn W.U., Dixon A.F., Fairbairn D.J., Foellmer M.W., Gibert P., van der Linde K. et al. (2007). Proximate causes of Rensch's rule: does sexual size dimorphism in arthropods result from sex differences in development time? American Naturalist, 169: 245–257. doi:10.1086/510597

Bohart, R.M. & Menke, A.S. (1976). Sphecidae wasps of the world. Berkeley: University of California Press, 695 p

Buschini, M.L.T. & Buss, C.E. (2014). Nesting biology of Podium angustifrons Kohl (Hymenoptera, Sphecidae) in an Araucaria Forest fragment. Brazilian Journal of Biology, 74(2): 493-500.

Buys S.C, Morato E.F. & Garófalo C.A. (2004). Description of the immature instar of three species of Podium, Fabricius (Hymenoptera, Specidae) from Brazil. Revista Brasileira de Zoologia, 21: 73-77

Camillo, E. (2001). Inquilines of Brachymenes dyscherus nests with special reference to Monobia schrottkyi (Hymenoptera, Vespidae, Sphecidae). Revista de Biologia Tropical, 49: 1005-1012

Camillo, E., Garófalo, C.A., Assis, J.M.F. & Serrano, J.C. (1996). Biologia de Podium denticulatum Smith em ninhos armadilha (Hymenoptera: Sphecidae: Sphecinae). Anais da Sociedade Entomológica do Brasil, 25: 439-450

Campos, E.S., Araújo, T.N., Rabello, L.S., Bastos, E.M.A. & Augusto, S.C. (2018). Does seasonality affect nest productivity, body size, and food niche of Tetrapedia curvitarsis Friese (Apidae, Tetrapediinae)? Sociobiology, 65: 576-582. doi: 10.13102/sociobiology.v65i4.3395

Costa, C.C.F. & Gonçalves, R.B. (2019). What do we known about Neotropical trap-nesting bees? Synopsis about their nest biology and taxonomy. Papéis Avulsos de Zoologia, 59: e20195926.

Coville, R.E. & Coville, P.L. (1980). Nesting biology and male behavior of Trypoxylon (Trypargilum) tecnotitlan in Costa Rica (Hymenoptera: Aphecidae). Annals of the Entomological Society of America, 73: 110-119. doi: 10.1093/aesa/73.1.110

Fairbairn, D.J. (2005). Allometry for sexual size dimorphism: testing two hypotheses for Rensch's rule in the water strider Aquarius remigis. American Naturalist, 166: S69–S84.

Fricke, J.M. (1991). Trap-nest bore diameter preferences among sympatric Passaloecus spp. (Hymenoptera, Sphecidae). The Great Lakes Entomologist, 24: 123-125.

Frohlich, D.R. & Tepedino, V.J. (1986). Sex ratio, parental investment, and interparent variability in nesting success in a solitary bee. Evolution, 40: 142-151.

doi: 10.1111/j.1558-5646.1986.tb05725.x.

Fisher, R.A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press, 230 p

Garcia, M.V.B. & Adis, J. (1993). On the biology of Penepodium goryanum (Lepeletier) in wooden trapnests (Hymenoptera, Sphecidae). Proceedings of the Entomological Society of Washington, 95: 547-553

Garcia, M.V.B. & Adis, J. (1995). Comportamento de nidificação de Trypoxylon (Trypargilum) rogenhoferi Kohl (Hymenoptera, Sphecidae) em uma floresta inundável de várzea na Amazônia Central. Amazoniana, 13: 259-282

Gazola, A.L. (2003). Ecologia de abelhas e vespas solitárias (Hymenoptera, Apoidea) que nidificam em ninhos-armadilha em dois fragmentos de floresta estacional semidecidual no Estado de São Paulo. Tese de Doutorado. FFCLRP-USP, Ribeirão Preto. 106 p

Genaro, J.A. (1994). Inquilinos de Sceliphron assimile, con énfasis en Podium fulvipes (Hymenoptera: Vespidae, Sphecidae, Megachilidae). Caribbean Journal of Science, 30: 268-270

Grassi-Sella, M.L., Garófalo, C.A. & Francoy, T.M. (2018). Morphological similarity of widely separated populations of two Euglossini (Hymenoptera: Apidae) species based on geometric morphometrics of wings. Apidologie, 49: 151-161. doi: 10.1007/s13592-017-0536-0

Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353-357. doi: 10.1111/j.1755-0998.2010.02924.x.

Krombein, K.V. (1958). Biology and taxonomy of the cuckoo wasps of coastal North California. Transactions of the American Entomological Society, 84: 141-168.

Krombein, K.V. (1967). Trap-nesting wasps and bees. Life-histories, nests and associates. Washington: Smithsonian Inst. 570 p

Krombein, K.V. (1970). Behavioral and life history notes on the Floridian solitary wasps (Hymenoptera: Sphecidae). Smithsonian Contr. No. 46, 26p.

Matthews, R.W. (1991). Evolution of social behavior in sphecid wasps. In Ross, K.G. & Matthews, R.W. (Eds), The social biology of wasps (pp. 570-602). Ithaca, NY: Cornell University Press, p 678

Melo, GAR. (2000). Comportamento social de vespas da família Sphecidae (Hymenoptera: Apoidea). Oecologia Brasiliensis, 8(1): 85-130. Doi: 10.4257/oeco.2000.0801.04.

Michener, C.D. (2007). The Bees of the World. 2nd edition. MA: Johns Hopkins University Press, p 953

Morato, E.F. (2001). Efeitos da fragmentação florestal sobre abelhas e vespas solitárias na Amazônia Central. II. Estratificação vertical. Revista Brasileira de Zoologia, 18: 737-747.

Morato, E.F. & Campos, L.A.O. (2000). Efeitos da fragmentação florestal sobre abelhas e vespas solitárias em uma área da Amazônia Central. Revista Brasileira de Zoologia, 17: 429-444.

Pretorius, E. (2005). Using geometric morphometrics to investigate wing dimorphism in males and females of Hymenoptera – a case study based on the genus Tachysphex Kohl (Hymenoptera: Sphecidae: Larrinae). Australian Journal of Entomology, 44: 113-121. doi: 10.1111/j.1440-6055.2005.00464.x

Quezada-Euán, J.J.G., Sheets, H.D., De Luna, E. & Eltz, T. (2015). Identification of cryptic species and morphotypes in male Euglossa: morphometrics analysis of forewing (Hymenoptera: Euglossini). Apidologie 46: 787-795. doi: 10.1007/s13592-015-0369-7

Rau, P. (1937). A note on the nesting habits of the roach-hunting wasp, Podium (Parapodium) carolina Rohwer. Entomological News, 48: 91-94.

Ribeiro, F. & Garófalo, C.A. (2010). Nesting behavior of Podium denticulatum Smith (Hymenoptera: Sphecidae). Neotropical Entomology, 39: 885-891. doi: 10.1590/S1519-566X2010000600006

Ribeiro, M., Aguiar, W.M., Nunes, L.A. & Carneiro, L.S. (2019). Morphometric changes in three species of Euglossini (Hymenoptera.: Apidae) in response to landscape structure. Sociobiology, 66: 339-347. doi: 10.13102/sociobiology.v66i2.3779

Rohlf, F.J. (2009) tpsUtil, versão 1.79. Department of Ecology and Evolution, State University of New York, Stony Brook, USA. Disponível em:

Rohlf, F.J. (2010) tpsDig2, versão 2.31. A program for digitizing landmarks and outlines for geometric mor¬phometrics. Department of Ecology and Evolution, State University of New York, Stony Brook, USA. Disponível em:

Santoni, M.M. (2008). Biologia de nidificação e estrutura sociogenética intranidal em espécies de Trypoxylon (Hymenoptera: Crabronidae). Master Dissertation, Universidade Federal de São Carlos, 152 p

Santoni, M.M. & Del Lama, M.A. (2007). Nesting biology of the trap-nesting Neotropical wasp Trypoxylon (Trypargilum) aurifrons Schuckard (Hymenoptera, Crabronidae). Revista Brasileira de Entomologia, 51: 369-376.

Stillwell R.C., Blanckenhorn W.U., Teder T., Davidowitz G. & Fox C.W. (2010). Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annual Review of Entomology, 55: 227–245.

Takahashi K.H. & Blanckenhorn, W.U. (2015). Effect of genomic deficiencies on sexual size dimorphism through modification of developmental time in Drosophila melanogaster. Heredity, 115: 140–145. doi:10.1038/hdy.2015.1

Tepedino, V.J. & Torchio, P.F. (1982). Temporal variability in the sex ratio of a non-social bee, Osmia lignaria propinqua Cresson: extrinsic determination on the tracking of a optimum? Oikos, 38: 177-182. doi: 10.2307/3544017

Trivers, R.L. & Hare, H. 1976. Haplodiploidy and the evolution of the social insects. Science, 191: 249-263. doi:10.1126/science.1108197

Zar, J.H. (1999). Biostatistical analysis, 4th. ed. London: Prentice Hall, 663 p



  • There are currently no refbacks.



JCR Impact Factor (2019): 0.690

JCR 5-year Impact Factor (2019): 0.846

Google Scholar h5-index (Insects and Arthropods journals): 12 

Scimago h-index (whole journal circulation period): 37         

Scopus CiteScore (2016-2019): 0.90

Mean time for editorial decision (2020): 78 days

Mean time for article publication (2020): 171 days


Sociobiology is indexed in the following databases: