Recover and They’ll Come: Flower Visiting Bees Benefit from the Continuous of Micro-Environments Set by Regenerating Forest Fragments

Ana Isabel Sobreiro, Lucas Lopes da Silveira Peres, Jessica Amaral Henrique, Rosilda Mara Mussury, Valter Vieira Alves-Junior

Abstract


Forest habitats are important sources of food and nesting resources for pollinators, primarily in urban areas and landscapes with intense agricultural activity. The forest fragmentation and environmental changes occurring in these green refuges are known to impose survival challenges to pollinating bees, leading to species loss. However, it is not well known how the species of bees that visit flowers are distributed in forest micro-environments. To fill this gap, we sampled flower visiting bees in a continuous forest matrix with micro-environments of two forest types (mature and regenerating forest). We examined how the local environmental changes and climatic conditions affect the composition and uniformity of bee communities in the different micro-environments. Our results indicated that both abundance and richness were similar between forest types studied here, however climatic conditions and plant flowering patterns affect the composition of bees. Thus, our results demonstrated that the continuous micro-environments can favor floral visits and the reintegration of bee communities, and still, that this strategy can be used to minimize the impacts of environmental changes at local scales.


Keywords


Secondary forest; Climate conditions; Atlantic forest; Pollinating bees; Regeneration forest

Full Text:

PDF

References


Abdi, H. & Williams, L. J. (2010). Principal component analysis. WIREs computational statistics 2: 433-459. doi: 10.1002/wics.101

Abrahamczyk, S., Gottleuber, P., Matauschek, C. & Kessler, M. (2011). Diversity and community composition of euglossine bee assemblages (Hymenoptera: Apidae) in western Amazonia. Biodiversity and Conservation, 20: 2981-3001. doi: 10.1007/s10531- 011-0105-1

Aguiar, C. M. L., Santana, E. B., Martins, C. F., Vivallo, F., Santos, C. O. & Santos, G. M. M. (2018). Species richness and diversity in bee assemblages in a fragment of Savana (Cerrado) at Northeastern Brazil. Sociobiology, 65: 566-575. doi: 10.13102/sociobiology.v65i4.3372

Alaux, C., Allie, F., Decourtye, A., Odoux, J. F., Tamic, T., Chabirad, M., Delestra, E., Decugis, F., Conte, Y. L. & Henry, M. (2017). A ´landscape physiology´ approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Scientific Reports, 7: 40568. doi: 10.1038/srep40568

Aleixo, K. P., Faria, L. B., Garófalo, C. A., Imperatriz Fonseca, V. L. & Silva, C. I. (2013). Pollen collected and foraging activities of Frieseomelitta varia (Lepeletier)

(Hymenoptera: Apidae) in an urban landscape. Sociobiology, 60: 266-276. doi: 10.13102/sociobiology.v60i3.266-276

Aleixo, K. P., Menezes, C., Fonseca, V. L. I. & Silva, C. I. (2017). Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis). Apidologie, 48: 117-127. doi: 10.1007/s13592-016-0456-4

Almeida, M. L. S., Carvalho, G. S., Novais, J. R., Storck-Tonon, D., Oliveira, M. L., Mahlmann, T., Nogueira, D. S. & Pereira, M. J. B. (2020). Contribution of the Cerrado as Habitat for Sunflower Pollinating Bees. Sociobiology, 67: 281-291. doi: 10.13102/sociobiology.v67i2.4865

Baede, A. P. M., Ahlonsou, E., Ding, Y., Schimel, D., Bolin, B. & Pollonais, S. (2001). The Climate System: an Overview. In Houghton, J. T., Ding, Y., Grigss, D. J., Noguer, M., Linden, P. J., Van Der, D., Maskell, K., & Johnson, C. A. (Eds.). Climate change 2001: the scientific basis. Cambridge: Cambridge University Press.

Blettler, D.C., Fagúndez, G.A. & Caviglia, O. P. (2018). Contribution of honeybees to soybean yield. Apidologie, 45: 101-111. doi: 10.1007/s13592-017-0532-4

Boscolo, D., Tokumoto, P. M., Ferreira, P. A., Ribeiro, J. W. & Santos J. S. (2017). Positive responses of flower visiting bees to landscape heterogeneity depend on functional connectivity levels. Perspectives in Ecology and Conservation, 15: 18-24. doi: 10.1016/j.pecon.2017.03.002

Botsch, J. C., Walter, S. T., Karubian, J., González, N., Dobbs, E. K. & Brosi, B.J. (2017). Impacts of forest fragmentation on orchid bee (Hymenoptera: Apidae: Euglossini) communities in the Chocó biodiversity hotspot of northwest Ecuador. Journal of Insect Conservation, 21: 633-643. doi: 10.1007/ s10841-017-0006-z

Brasil. (1994). Define formações vegetais primárias e estágios sucessionais de vegetação secundária. Ministério do Meio Ambiente, Conselho Nacional de Meio Ambiente, CONAMA. Resolução CONAMA n°2, de 18 de março de 1994. In Resoluções, 1994. http://www.mma.gov.br/port/conama/res/res94/res0294.html. (accessed date: 05 May, 2020) (In Portuguese)

Dew, R. M., Silva, D. P. & Rehan, S. M. (2019). Range expansion of an already widespread bee under climate change. Global Ecology and Conservation, 17: e00584. doi: 10.1016/j.gecco.2019.e00584

Fao. (2016). Global Forest Resources Assessment 2015. How are the world´s forests changing? Food and Agriculture Organization of the United Nations. http://www.fao.org/3/a-i4793e.pdf. (accessed date: 06 May, 2020)

Ferreira, P. A., Boscolo, D., Carvalheiro, L. G., Biesmeijer, J. C., Rocha, P. L. B. & Viana, B. F. (2015). Response of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology, 30: 2067-2078. doi: 10.1007/s10980-015-0231-3

Fischer, L. K., Eichfeld, J., Kowarik, J. & Buchholz, S. (2016). Disentangling urban habitat and matrix effects on wild bee species. PeerJ, 4: e2729. doi: 10.7717/peerj.2729

Fowler, R. E., Rotheray, E. L. & Goulson, D. (2016). Floral abundance and resource quality influence pollinator choice. Insect Conservation and Diversity, 9: 481-494. doi: 10.1111/icad.12197

Frankie, G. W. & Coville, R. (1979). An experimental study on the foraging behavior of selected solitary bee species in the Costa Rican dry forest (Hymenoptera: Apoidea). Journal of the Kansas Entomological Society, 52: 591–602.

Gianinni, T. C., Costa, W. F., Borges, R. C., Miranda, L., Costa, C. P. W.; Saraiva, A. M. & Imperatriz Fonseca, V. L. (2020). Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bee are pontentially more affected. Regional Environmental Change, 20: 9. doi: 10.1007/s10113-020-01611-y

Google Earth-maps. http://mapas.google.com. (accessed date: 29 May, 2020)

Gostinski, L. F., Carvalho, G. C. A., Carvalho, M. M. C. & Albuquerque, P. M. C. (2016). Species richness and activity pattern of bees (Hymenoptera, Apidae) in the restinga area of Lencóis Maranhenses National Park, Barreirinhas, Maranhão, Brazil. Revista Brasileira de Entomologia, 60: 319-327. doi: 10.1016/j.rbe.2016.08.004

Gu, Z. (2014). Circlize implements and enhances circular visualization in R. Bioinformatics, 30: 2811-2812. doi: 10.1093/bioinformatics/btu393

Hamblin, A. L., Youngsteadt, E. & Frank, S. D. (2018). Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosystems, 21: 419-428. doi: 10.1007/s11252-018-0731-4

Hannah, L., Steele, M., Fung, E., Imbach, P., Flint, L. & Flint, A. (2017). Climate change influences on pollinator, forest, and farm interactions across a climate gradient. Climatic Change, 141: 63-75. doi: 10.1007/s10584-016-1868-x

Hass, A. L., Liese, B., Heong, K. L., Settele, J., Tscharntke, T. & Westphal, C. (2018). Plant-pollinator interactions and bee functional diversity are driven by agroforests in rice-dominated landscapes. Agriculture, Ecosystems and Environment, 253: 140-147. doi: 10.1016/j.agee.2017.10.019

Hausmann, S. L., Petermann, J. S. & Rolff, J. (2016). Wild bees as pollinators of city trees. Insect Conservation and Diversity, 9: 97-107. doi: 10.1111/icad.12145

Heinrich, B. (1979). “Majoring” and “Minoring” by foraging bumbleees, Bombus vagans: An experimental analysis. Ecological Society of America, 60: 245-255.

Hunt, J. C. R., Aktas, Y. D., Mahalov, A., Moustaoui, M., Salamanca, F. & Georgescu, M. (2018). Climate change and growing megacities: hazards and vulnerability. Engineering Sustainability, 171: 314-326. doi: 10.1680/jensu.16.00068

Ibama. (1991). Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. PORTARIA Nº 83-N, DE 26 DE SETEMBRO DE 1991 - In: Resoluções, 1991. www.mp.go.gov.br/nat_sucroalcooleiro/Documentos/legislacao/Geral/florestas/flo10.pdf. (accessed date: 10 May, 2016) (In Portuguese)

Itaipu (1978). Inventário florestal da região de influência da represa Itaipu. Curitiba: Itaipu Binacional, 1978. https://www.itaipu.gov.br/meioambiente/reposicao-florestal. (accessed date: 14 May, 2017) (In Portuguese)

Jauker, F., Jauker, B., Grass, I., Steffan-Dewenter, I. & Wolters, V. (2018). Partitioning wild bee and hoverfly contributions to plant-pollinator network structure in fragmented habitats. Ecology, 100: e02569. doi: 10.1002/ecy.2569

Junior, N. T. F., Blochtein, B. & Moraes, J. F. (2010). Seasonal flight and resource collection patterns of colonies of the stingless bee Melipona bicolor schencki Gribodo (Apidae, Meliponini) in an Araucaria forest area in southern Brazil. Revista Brasileira de Entomologia, 54: 630-636. doi: 10.1590/S0085-56262010000400015

Junqueira, C. N. & Augusto, S. C. (2017). Bigger and sweeter passion fruits: effect of pollinator enhancement on fruit production and quality. Apidologie, 48: 131-140. doi: 10.1007/s13592-016-0458-2

Kamper, W., Weiner, C., Kuhsel, S., Storm, C., Eltz, T. & Bluthgen, N. (2017). Evaluating the effects of floral resource specialisation and of nitrogen regulation on the vulnerability of social bees in agricultural landscapes. Apidologie, 48: 371-383. doi: 10.1007/s13592-016-0480-4

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C. & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, 274: 303-313. doi: 10.1098/rspb.2006.3721

Kratschmer, S., Pachinger, B., Schwantzer, M., Paredes, D., Guernion, M., Burel, F., Nicolai, A., Strauss, P., Bauer, T., Kriechbaum, M., Zaller, J. G. & Winter, S. (2018). Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards? Agriculture, Ecosystems and Environment, 266: 124-152. doi: 10.1016/j.agee.2018.07.018

Lowenstein, D. M., Matteson, K. C., Xiao, I., Silva, A. M. & Minor, E. S. (2014). Humans, bees, and pollination services in the city: the case of Chicago, IL (USA). Biodiversity and Conservation, 23: 2857-2874. doi: 10.1007/s10531-014-0752-0

Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing Company, Oxford.

Marcilio-Silva, V., Zwiener, V. P. & Marques, M. C. M. (2017). Metacommunity structure, additive partitioning and environmental drivers of woody plants diversity in the Brazilian Atlantic Forest. Diversity and Distributions, 23: 1110-1119. doi: 10.1111/ddi.12616

Marques, M. F., Deprá, M. S. & Gaglianone, M. C. (2018). Seasonal Variation in Bee-Plant Interactions in an Inselberg in the Atlantic Forest in Southeastern Brazil. Sociobiology, 65: 612-620. doi: 10.13102/sociobiology.v65i4.3473

Matos, M. C. B., Silva, S. S. & Teodoro, A. V. (2016). Seasonal population abundance of the assembly of solitary wasps and bees (Hymenoptera) according to land-use in Maranhão state, Brazil. Revista Brasileira de Entomologia, 60: 171-176. doi: 10.1016/j.rbe.2016.02.001

Melo, A. S. (2008). O que ganhamos ‘confundindo’ riqueza de espécies e equabilidade em um índice de diversidade? Biota Neotropica, 8: 21-27.

Morandin, L. A. & Kremen, C. (2013). Bee preference for native versus exotic plants in restored agricultural hedgerows. Restoration Ecology, 21: 26-32. doi: 10.1111/j.1526-100X.2012.00876.x

Morante-Filho, J. C., Arroyo-Rodríguez, V. & Faria, D. (2016). Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalista birds. Journal of Animal Ecology, 85: 240-250. doi: 10.1111/1365-2656.12448

Nakamura, A., Kitching, R. L., Cao, M., Creedy, T. J., Fayle, T. M., Freiberg, M., Hewitt, C. N., Itioka, T., Koh, L. P., Ma, K., Malhi, Y., Mitchell, A., Novotny, V., Ozanne, C. M. P., Song, L., Wang, H. & Ashton, L. A. (2017). Forests and Their Canopies: Achievements and Horizons in Canopy Science. Trends in Ecology & Evolution, 32: 438-451. doi: 10.1016/j.tree.2017.02.020

Neame, L. A., Griswold, T. & Elle, E. (2012). Pollinator nesting guilds respond differently to urban habitat fragmentation in an oak-savannah ecosystem. Insect Conservation and Diversity, 6: 57-66. doi: 10.1111/j.1752-4598.2012.00187.x

Odanaka, K. A. & Rehan, S. M. (2020). Wild bee distribution near forested landscapes is dependent on successional state. Forest Ecosystems, 7: 26. doi: 10.1186/s40663-020-00241-4

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Henry, M., Stevens, H., Szoecs, E. & Wagner, H. (2018). Vegan: Community Ecology Package. R package version 2: 4-6. https://CRAN.R-project.org/package=vegan. (accessed date: 16 May, 2020)

Oliveira, H. C. & Oliveira, S. M. (2016). Vertical distribution of epiphytic bryophytes in Atlantic Forest fragments in northeastern Brazil. Acta Botanica Brasilica, 30: 609-617. doi: 10.1590/0102-33062016abb0303

Oliver, T., Roy, D. B., Hill, J. K., Brereton, T. & Thomas, C. D. (2010). Heterogeneous landscapes promote population stability. Ecology Letters, 13: 473–484. doi: 10.1111/j.1461-0248.2010.01441.x

Ollerton, J. (2017). Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review of Ecology, Evolution, and Systematics, 48: 353-376. doi: 10.1146/annurev-ecolsys-110316-022919

Papanikolaou, A. D., Kuhn, I., Frenzel, M. & Schweiger, O. (2017). Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landscape Ecology, 32: 581-593. doi: 10.1007/s10980-016-0471-x

Potts, S. G., Imperatriz-Fonseca, V. & Ngo, H. T. (2016). IPBES. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S. G. Potts, V. L. Imperatriz-Fonseca and H. T. Ngo (Eds.). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany. 552 pages. doi: 10.5281/zenodo.3402856

Qgis Development Team. (2016). QGIS Geographic Information System. Open Source Geospatial Foundation. http://www.osgeo.org/qgis/. (accessed date: 20 May, 2020)

R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2017.

Ramalho, M. (2004). Stingless bees and mass flowering trees in the canopy of Atlantic Forest: a tight relationship. Acta Botanica Brasilica, 18: 37-47. doi: 10.1590/S0102-33062004000100005

Reflora/CNPq. Programa - Herbário Virtual. reflora.jbrj.gov.br/reflora/herbarioVirtual/. (accessed date: 23 May, 2020) (In Portuguese)

Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. & Hirota, M. M. (2009). The Brazilian Atlantic Forest: How much is left and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142: 1141–1153. doi: 10.1016/j.biocon.2009.02.021

Roberts, H. P., King, D. I. & Milam, J. (2017). Factors affecting bee communities in forest openings and adjacent mature forest. Forest Ecology and Management, 394: 111–122. doi: 10.1016/j.foreco.2017.03.027

Rolin, O., Pérez-Méndez, N.; Bretagnolle, V. & Henry, M. (2019). Preserving habitat quality at local and landscape scales increases wild bee diversity in intensive farming systems. Agriculture, Ecosystems and Enviroment, 275: 73-80. doi: 10.1016/j.agee.2019.01.012

Rotchés-Ribalta, R., Winsa, M., Roberts, S. P. M. & Ockinger, E. (2018). Associations between plant and pollinator communities under grassland restoration respond mainly to landscape connectivity. Journal of Applied Ecology, 55: 2822-2833. doi: 10.1111/1365-2664.13232

Salisbury, A., Armitage, J., Bostock, H., Perry, J., Tatchell, M. & Thompson, K. (2015). Enhancing gardens as habitats for flower-visiting aerial insects (pollinators): should we plant native or exotic species? Journal of Applied Ecology, 52: 1156-1164. doi: 10.1111/1365-2664.12499

Scaven, T. & Rafferty, N. E. (2013). Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current Zoology, 59: 418-426. doi: 10.1093/czoolo/59.3.418

Schweiger, O., Biesmeijer, J. C., Bommarco, R., Hickler, T., Hulme, P. E., Klotz, S., Kuhn, I., Moora, M., Nielsen, A., Ohlemuller, R., Petanidou, T., Potts, S. G., Pysek, P., Stout, J. C., Sykes, M. T., Tscheulin, T., Vila, M., Walther, G-R., Westphal, C., Winter, M., Zobel, M. & Settele, J. (2010). Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biological Reviews, 85: 777-795. doi: 10.1111/j.1469-185X.2010.00125.x

Schleuning, M., Farwig, N., Peters, M. K., Bergsdorf, T., Bleher, B., Brandl, R., Dalitz, H., Fischer, G., Freund, W., Gikundu, M. W., Hagen, M., Garcia, F. H., Kagezi, G. H., Kaib, M., Kraemer, M., Lung, T., Naumann, C. M., Schaab, G., Templin, M., Uster, D., Wagele, J. W. & Bohning-Gaese, K. (2011). Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest. PLoS ONE, 6: e27785. doi: 10.1371/journal.pone.0027785

Sobreiro, A. I., Peres, L. L. S., Boff, S., Henrique, J. A. & Alves-Jr, V. V. (2019). Continuous micro-environments associated orchid bees benefit from an Atlantic Forest remnant, Paraná state, Brazil. Sociobiology, 66: 293-305. doi: 10.13102/sociobiology.v66i2.3443

Stangler, E. S., Hanson, P. E., Steffan-Dewenter, I. (2016). Vertical diversity patterns and biotic interactions of trap-nesting bees along a fragmentation gradient of small secondary. Apidologie, 47: 527-538. doi: 10.1007/s13592-015-0397-3

Steffan-Dewenter, I. & Westphal, C. (2008). The interplay of pollinator diversity, pollination services and landscape change. Journal of Applied Ecology, 45: 737-741. doi: 10.1111/j.1365-2664.2008.01483.x

Stein, K., Coulibaly, D., Stenchly, K., Goetze, D., Porembski, S., Lindner, A., Konaté, S. & Linsenmair, E. K. (2017). Bee pollinaiton increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Scientific Reports, 7: 17691. doi: 10.1038/s41598-017-17970-2

Switanek, M., Crailsheim, K., Truhetz, H. & Brodschneider, R. (2017). Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of the Total Environment, 579: 1581-1587. doi: 10.1016/j.scitotenv.2016.11.178

Thomson, D. M. (2019). Effects of long-term variation in pollinator abundance and diversity on reproduction of a generalist plant. Journal of Ecology, 107: 491-502. doi: 10.1111/1365-2745.13055

Tylianakis, J.M., Klein, A.‐M., Lozada, T. & Tscharntke, T. (2006). Spatial scale of observation affects α, β and γ diversity of cavity‐nesting bees and wasps across a tropical land‐use gradient. Journal of Biogeography, 33: 1295-1304. doi: 10.1111/j.1365-2699.2006.01493.x

Ulyshen, M. D., Soon, V. & Hanula, J. L. (2010). On the vertical distribution of bees in a temperate deciduous forest. Insect Conservation and Diversity, 3: 222–228. doi: 10.1111/j.1752-4598.2010.00092.x

Vanderplanck, M., Martinet, B., Carvalheiro, L. G., Rasmont, P., Barraud, A., Renaudeau, C. & Michez, D. (2019). Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Scientific Reports, 9: 12596. doi: 10.1038/s41598-019-49025-z

Venjakob, C., Klein, A. M., Ebeling, A., Tscharntke, T. & Scherber, C. (2016). Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions. Ecology and Evolution, 6: 2249– 2261. doi: 10.1002/ece3.2026

Viana, B. F., Boscolo, D., Neto, E. M., Lopes, L., Lopes, A., Ferreira, P., Pigozzo, C. M. & Primo, L. (2012). How well do we understandlandscape effects on pollinators and pollination services? Journal of Pollination Ecology, 7: 31–41. doi: 10.26786/1920-7603%282012%292

Wickham, H.; Chang, W.; Henry, L.; Perdesen, T. L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H. & Dunnington, D. (2020). R studio - ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org. (accessed date: 20 May, 2020)

Wilson, J. S., Kelly, M. & Carril, O. M. (2018). Reducing protected lands in a hotspot of bee biodiversity: bees of Grand Staircase-Escalante National Monument. PeerJ, 6: e6057. doi: 10.7717/peerj.6057

Winfree, R., Reilly, J. R., Bartomeus, I., Cariveau, D. P., Williams, N. M. & Gibbs, J. (2018). Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science, 359: 791-793. doi: 10.1126/science.aao2117

Wright, I. R., Roberts, S. P. M. & Collins, B. E. (2015). Evidence of forage distance limitations for small bees (Hymenoptera: Apidae). European Journal of Entomology, 112: 303– 310. doi: 10.14411/eje.2015.028

Zermeño-Hernández, I., Pingarroni, A. & Martínez-Ramos, M. (2016). Agricultural land-use diversity and forest regeneration potential in human-modified tropical landscapes. Agriculture, Ecosystems and Environment, 230: 210-220. doi: 10.1016/j.agee.2016.06.007

Ziober, B. R. & Zanirato, S. H. (2014). Actions to safeguard biodiversity during the building of the Itaipu Binacional Hydroeletric plant. Ambiente & Sociedade, 17: 59-78.

Zurbuchen, A., Landert, L., Klaiber, J., Muller, A., Hein, S. & Dorn, S. (2010). Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biological Conservation, 143: 669-676. doi: 10.1016/j.biocon.2009.12.003




DOI: http://dx.doi.org/10.13102/sociobiology.v68i1.5861

Refbacks

  • There are currently no refbacks.


JOURNAL METRICS

 

JCR Impact Factor (2019): 0.690

JCR 5-year Impact Factor (2019): 0.846

Google Scholar h5-index (Insects and Arthropods journals): 12 

Scimago h-index (whole journal circulation period): 37         

Scopus CiteScore (2016-2019): 0.90

Mean time for editorial decision (2020): 78 days

Mean time for article publication (2020): 171 days

 

Sociobiology is indexed in the following databases: