Response of Three Kinds of Detoxifying Enzymes from Odontotermes formosanus (Shiraki) to the Stress Caused by Serratia marcescens Bizio (SM1)

Authors

  • XiaoYu Lu
  • MeiLing Nong
  • Kai Feng
  • Meng Xu
  • Fang Tang

DOI:

https://doi.org/10.13102/sociobiology.v68i2.5945

Keywords:

Termite, Bacteria, Glutathione S-transferase, UDP glycosyltransferase, Cytochrome P450.

Abstract

Subterranean termite Odontotermes formosanus (Shiraki) (Blattodea: Isoptera: Termitidae), is a pest species found in forests and dams. Serratia marcescens Bizio (SM1) has a potential pathogenic effect on O. formosanus. However, the response of detoxifying enzymes to exposure by S. marcescens in O. formosanus has not been studied. In the present work, 20 detoxifying enzyme genes, including 6 glutathione S-transferases (GSTs), 5 UDP glycosyltransferases (UGTs) and 9 Cytochrome P450s (CYPs), were identified from the O. formosanus transcriptome dataset by bioinformatics analysis. Furthermore, the effects of SM1 infection on the transcription levels of detoxifying enzyme genes (GSTs, UGTs and CYPs) in O. formosanus were determined. The results showed that the expression of all detoxifying enzyme gene, except one GST, in O. formosanus were altered in response to the infection by SM1. The response of GSTs, UGTs and CYPs to SM1 in O. formosanus suggested that they may play an important role in the defense against bacterial infection such as SM1, and implies that termites have evolved a complex immune response to potential pathogens.

References

Abdellaoui, K., Miladi, M., Mkhinini, M., Boughattas, I., Ben Hamouda, A., Hajji-Hedfi, L., Tlili, H. & Acheuk, F. (2020). The aggregation pheromone phenylacetonitrile: Joint action with the entomopathogenic fungus Metarhizium anisopliae, var. acridum, and physiological and transcriptomic effects on Schistocerca gregaria, nymphs. Pesticide Biochemistry and Physiology, 167: UNSP 104594. doi: 10.1016/j.pestbp. 2020.104594.

Afzal, M., Farman, M., Rasib, K.Z. & Qureshi, N.A. (2019). Biocidal action of silver oak (Grevillea robusta) leaf extract on the termite Heterotermes indicola Wasmann (Blattodea: Rhinotermitidae). International Biodeterioration and Biodegradation, 139: 1-10. doi: 10.1016/j.ibiod.2019.02.001.

Ahmad, S.A. & Hopkins, T.L. (1993). Phenol β-glucosyltrans-ferases in six species of insects: properties and tissue localization. Comparative Biochemistry and Physiology Part B Comparative Biochemistry, 104: 515-519. doi: 10.1016/0305-0491(93) 90276-B.

Amenya, D.A., Naguran, R., Lo, T.C.M., Ranson, H., Spillings, B.L., Wood, O.R., Brooke, B.D., Coetzee, M. & Koekemoer, L.L. (2008). Over expression of a cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Molecular Biology, 17: 19-25. doi: 10.1111/j.1365-2583.2008.00776.x.

Ashraf, A., Qureshi, N.A., Shaheen, N., Iqbal, A., Fatima, H., Afzal, M., Alhewairini, S.S. & Qureshi, M.Z. (2020). Termiticidal and protozocidal potentials of eight tropical plant extracts evaluated against Odontotermes obesus Rambur (Blattodea; Termitidae) and Heterotermes indicola Wasmann (Blattodea; Rhinotermitidae). Polish Journal of Environmental Studies, 29: 3493-3507. doi: 10.15244/pjoes/116105.

Berge, J.B., Feyereisen, R. & Amichot, M. (1998). Cytochrome P450 monooxygenases and insecticide resistance in insects. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1376): 1701-1705. doi: 10.1098/rstb.1998.0321.

Bock, K.W. (2016). The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. Biochemical Pharmacology, 99: 11-17. doi: 10.1016/j.bcp.2015.10.001.

Bozzolan, F., Siaussat, D., Maria, A., Durand, N., Pottier, M.A., Chertemps, T. & Maibeche-Coisne, M. (2015). Antennal uridine diphosphate (UDP)-glycosyltransferases in a pest insect: diversity and putative function in odorant and xenobiotics clearance. Insect Molecular Biology, 23: 539-549. doi: 10. 1111/imb.12100.

Bulmer, M.S., Lay, F. & Hamilton, C. (2010). Adaptive evolution in subterranean termite antifungal peptides. Insect Molecular Biology, 19: 669-674. doi: 10.1111/j.1365-2583. 2010.01023.x.

Castelli, M.E., Fedrigo, G.V., Clementin, A.L., Ielmini, M.V., Feldman, M.F. & Vescovi, E.G. (2008). Enterobacterial common antigen integrity is a checkpoint for flagellar biogenesis in Serratia marcescens. Journal of Bacteriology, 190: 213-220. doi: 10.1128/JB.01348-07.

Chakraborty, U., Chakraborty, B. N. & Chakraborty, A. P. (2010). Influence of Serratia marcescens TRS-1 on growth promotion and induction of resistance in Camellia sinensis against Fomes lamaoensis. Journal of Plant Interactions, 5: 261-272. doi: 10.1080/17429140903551738.

Chouvenc, T., Efstathion, C.A., Elliott, M.L. & Su, N.Y. (2013). Extended disease resistance emerging from the faecal nest of a subterranean termite. Proceedings of the Royal Society B-Biological Sciences, 280(1770): 20131885. doi: 10.1098/rspb.2013.1885.

Chouvenc, T., Su, N.Y. &. Grace, J.K. (2011). Fifty years of attempted biological control of termites – Analysis of a failure. Biological Control, 59: 69-82. doi: 10.1016/j.biocontrol.2011.06.015.

Chouvenc, T. & Su, N.Y. (2010). Apparent synergy among defense mechanisms in subterranean termites (Rhinotermitidae) against epizootic events: limits and potential for biological control. Journal of Economic Entomology, 103: 1327-1337. doi: 10.1603/EC09407.

Che-Mendoza, A., Penilla, R.P. & Rodriguez, D.A. (2009). Insecticide resistance and glutathione S-transferases in mosquitoes: A review. African Journal of Biotechnology, 8: 1386-1397. doi: 10.5897/AJB2009.000-9218.

Chen, H.Q., Yao, Q., Bao, F., Chen, K. P., Liu, X.Y., Li, J. & Wang, L. (2012). Comparative proteome analysis of silkworm in its susceptibility and resistance responses to Bombyx mori densonucleosis Virus. Intervirology, 55: 21-28. doi: 10.1159/000322381.

Cornman, R.S., Lopez, D. & Evans, J.D. (2013). Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae. PLoS One, 8: e65424. doi: 10.1371/journal.pone.0065424.

David, F.G. (1991). Evolution of glutathione S-transferase subunits in culicidae and related nematocera: Electrophoretic and immunological evidence for conserved enzyme structure and expression. Insect Biochemistry, 21: 435-445. doi: 10.1016/0020-1790(91)90010-C.

De Mandal, S., Lin, B.D., Shi, M J., Li, Y.P., Xu, X.X. & Jin, F.L. (2020). iTRAQ-based comparative proteomic analysis of larval midgut from the beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae) challenged with the entomopathogenic bacteria Serratia marcescens. Frontiers in Physiology, 11: 442. doi: 10.3389/fphys.2020.00442.

Enayati, A.A., Ranson, H. & Hemingway, J. (2005). Insect glutathione S-transferases and insecticide resistance. Insect Molecular Biology, 14: 3-8. doi: 10.1111/j.1365-2583. 2004.00529.x.

Ezzati-Tabrizi, R., Farrokhi, N., Talaei-Hassanloui, R., Alavi, S.M. & Hosseininaveh, V. (2013). Insect inducible antimicrobial peptides and their applications. Current Protein and Peptide Science, 14: 698-710. doi: 10.2174/1389203711209 070620.

Feng, Q.L., Davey, K.G., Pang, A.S.D., Ladd, T.P., Retnakaran, A., Tomkins, B.L., Zheng, S.C. & Palli, S.R. (2001). Developmental expression and stress induction of glutathione S-transferase in the spruce budworm, Choristoneura fumiferana. Journal of Insect Physiology, 47: 1-10. doi: 10.1016/S0022-1910(00)00093-7.

Feyereisen, R. (1999). Insect P450 enzymes. Annual Review of Entomology, 44: 507-533. doi: 10.1146/annurev.ento.44.1.507.

Fu, R.J., Feng, K., Lu, X.Y., Luo, J. & Tang, F. (2020b). Termite-killing components in Serratia marcescens (SM1). Journal of Forestry Research. doi: 10.1007/s11676-020-01172-0.

Fu, R.J., Qi, X.L., Feng, K., Xia, X.R. & Tang, F. (2019). Identification and characters of a strain of Serratia marcescens isolated from the Odontotermes formosanus. Journal of Nanjing Forestry University, 43: 76-82.

Fu, R.J., Zhou, L.X., Feng, K., Lu, X.Y., Luo, J. & Tang, F. (2020a). Effects of Serratia marcescens (SM1) and its interaction with common biocontrol agents on the termite, Odontotermes formosanus (Shiraki). Journal of Forestry Research. doi: 10.1007/s11676-020-01122-w.

Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R. & Mathieu, C. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 25(4): 386-401. doi: 10.1006/meth.2001.1261.

Guo, Y.L., Tao, B., Zheng, T.J., Li, B.Y., Zhai, X.H. & Pan, Y.Q. (2008). Inducement action of plant GSTs and herbicides antidotes. Journal of Northeast Agricultural University, 39(7): 136-139.

Hayes, J.D., Flanagan, J.U. & Jowsey, I.R. (2005). Glutathione Transferases. Annual Review of Pharmacology and Toxicology, 45: 51-88. doi: 10.1146/annurev.pharmtox. 45.120 403.095857.

Huang, F.F., Chai, C.L., Zhang, Z., Liu, Z.H., Dai, F.Y., Lu, C. & Xiang, Z.H. (2008). The UDP-glucosyltransferase multigene family in Bombyx mori. BMC Genomics, 9: 563. doi: 10.1186/1471-2164-9-563.

Huang, Q.Y., Sun, P.D., Zhou, X.G. & Lei, C.L. (2012). Characterization of head transcriptome and analysis of gene expression involved in caste differentiation and aggression in Odontotermes formosanus (Shiraki). PLoS One, 7(11): e50383. doi: 10.1371/journal.pone.0050383.

Huang, S.D., Huang, C.P., Yu, H. & Wang, D. (2015). Effect of Helicoverpa armigera nucleopoIyhedrovirus infection on GST activity and GST expression on host insect. Journal of Northwest Agricultural and Forestry University: Nature Science Edition, 2015(11): 129-133.

Hu, B., Zhang, S.H., Ren, M.M., Tian, X.R., Wei, Q., Mburu, D.K. & Su, J.Y. (2017). The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides. Insect Science, 26(2): 199-216. doi: 10.11 11/1744-7917.12538.

Hussain, A., Tian, M.Y. & Wen, S.Y. (2017). Exploring the caste-specific multi-layer defense mechanism of formosan subterranean termites, Coptotermes formosanus Shiraki. International Journal of Molecular Sciences, 18(12): 1-17. doi: 10.3390/ijms18122694

Ketterman, A.J., Saisawang, C. & Wongsantichon, J. (2011). Insect glutathione transferases. Drug Metabolism Reviews, 43(2): 253-265. doi: 10.3109/03602532.2011.552911.

Kim, O.T., Jin, M.L., Lee, D.Y. & Jetter, R. (2017). Characterization of the asiatic acid glucosyltransferase, UGT73AH1, involved in asiaticoside biosynthesis in Centella asiatica (L.) Urban. International Journal of Molecular Sciences, 18(12): 2630. doi: 10.3390/ijms18122630.

Kramm, K.R., West, D.F. & Rockenbach, P.G. (1982). Termite pathogens: Transfer of the entomopathogen Metarhizium anisopliae between Reticulitermes sp. termites. Journal of Invertebrate Pathology, 40(1):1-6. doi: 10.1016/0022-2011 (82)90029-5.

Kumar, N., Gandhewar, R. & Khan, M.Y. (2004). Serratia marcescens end ophthalmitis after cataract surgery despite vancomycin and gentamicin in irrigation fluid. Canadian Journal of Ophthalmology-Journal Canadien D Ophtalmologie, 39(7): 778-779. doi: 10.1016/S0008-4182(04)80073-5.

Lalitha, S. (2000). Primer Premier 5. Biotech Software and Internet Report, 1(6): 270-272. doi: 10.1089/152791600459894.

Lavania, M., Chauhan, P.S., Chauhan, S.V.S., Singh, H.B. & Nautiyal, C.S. (2006). Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Current Microbiology, 52(5): 363-368. doi: 10.1007/s00284-005-5578-2.

Listowsky, I., Abramovitz, M., Homma, H. & Niitsu, Y. (1988). Intracellular binding and transport of hormones and xenobiotics by glutathione-S-transferases. Drug Metabolism Reviews, 19(3-4): 305-318. doi: 10.3109/03602538808994138.

Liu, N.N., Li, M., Gong, Y.H., Liu, F. & Li, T. (2015). Cytochrome P450s-Their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology, 120: 77-81. doi: 10.1016/j.pestbp.2015.01.006.

Li, X., Schuler, M.A. & Berenbaum, M.R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52(1): 231-253. doi: 10.1146/annurev.ento.51.110104.151104.

Li, X.X., Shi, H.Y., Gao, X.W. & Liang, P. (2018). Characterization of UDP-glucuronosyltransferase genes and their possible roles in multi-insecticide resistance in Plutella xylostella (L.). Pest Management Science, 74(3): 695–704. doi: 10.1002/ps.4765.

Li, Y., Dong, Z.Y., Pan, D.Z., Pan, C. & Chen, L.H. (2017). Effects of termites on soil pH and its application for termite control in Zhejiang Province, China. Sociobiology, 64(3): 317-326. doi: 10.13102/sociobiology.v64i3.1674.

Luque, T., Okano, K. & O’Reilly, D. R. (2002). Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. European Journal of Biochemistry, 269: 819-825. doi: 10.1046/j.0014-2956.2001.02723.x.

Mittapalli, O., Neal, J.J. & Shukle, R.H. (2007). Tissue and life stage specificity of glutathione S-transferase expression in the hessian fly, Mayetiola destructor: Implications for resistance to host allelochemicals. Journal of Insect Science, 7(20): 1-13. doi: 10.1673/031.007.2001.

Nelson, D.R., Kamataki, T., Waxman, D.J., Guengerich, F.P., Estabrook, R.W., Feyereisen, R., Gonzalez, F.J., Coon, M.J., Gunsalus, I.C. & Gotoh, O. (1993). The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA and Cell Biology, 12: 1-51. doi: 10.1089/dna.1993.12.1.

O’Callaghan, M., Garnham, M.L., Nelson, T.L., Baird, D. & Jackson, T.A. (1995). The Pathogenicity of Serratia Strains to Lucilia sericata (Diptera: Calliphoridae). Journal of Invertebrate Pathology, 68: 22-27. doi: 10.1006/jipa. 1996.0054.

Pan, Y., Xu, P. J., Zeng, X. C., Liu, X. M. & Shang, Q. L. (2019). Characterization of UDP-glucuronosyltransferases and the potential contribution to nicotine tolerance in Myzus persicae. International Journal of Molecular Sciences, 20: 3637. doi: 10.3390/ijms20153637.

Pedra, J.H.F., McIntyre, L.M., Scharf, M.E. & Pittendrigh, B.R. (2004). Genom-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 101: 7034-7039. doi: 10.1073/pnas.0400580101.

Rosengaus, R.B., Traniello, J.F.A. & Bulmer, M.S. (2010). Ecology, Behavior and Evolution of Disease Resistance in Termites. Biology of Termites: a Modern Synthesis, 165-191.

Rowland, A., Miners, J.O. & Mackenzie, P.I. (2013). The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. International Journal of Biochemistry and Cell Biology, 45: 1121-1132. doi: 10.1016/j.biocel.2013.02.019.

Rus, F., Flatt, T., Tong, M., Aggarwal, K., Okuda, K., Kleino, A., Yates, E., Tatar, M. & Silverman, N. (2013). Ecdysone triggered PGRP-LC expression controls Drosophila innate immunity. EMBO Journal 32: 1626-1638. doi: 10.1038/emboj.2013.100.

Schuler, M.A. (2011). P450s in plant-insect interactions. Biochimica Biophysica Acta-Proteins and Proteomics, 1814: 36-45. doi: 10.1016/j.bbapap.2010.09.012.

Scott, J.G. (1999). Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 29: 757-777. doi: 10.1016/S0965-1748(99)00038-7.

Seixas, G., Grigoraki, L., Weetman, D., Vicente, J.L., Silva, A.C., Pinto, J., Vontas, J., Sousa, C.A. (2017). Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal). PLoS Neglected Tropical Diseases, 11: e0005799. doi: 10.1371/journal.pntd.0005799.

Shrestha, A., Bao, K., Chen, W.B., Wang, P., Fei, Z.J. & Blissar, G.W. (2019). Transcriptional responses of the Trichoplusia ni midgut to oral infection by the baculovirus Autographa californica Multiple Nucleopolyhedrovirus. Journal of Virology, 93: e00353-19. doi: 10.1128/JVI.00353-19.

Silva, A.X., Jander, G., Samaniego, H., Ramsey, J.S. & Figueroa, C.C. (2012). Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS One 7: e36810. doi: 10.1371/journal.pone.0036366.

Sun, L.L., Yin, J.J., Du, H., Liu, P. & Cao, C.W. (2020). Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV). Pesticide Biochemistry and Physiology, 163: 254-262. doi: 10.1016/j.pestbp.2019.11.019.

Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725-2729. doi: 10.1093/molbev/mst197.

Ting, A.S.Y., Meon, S., Kadir, J., Radu, S. & Singh, G. (2010). Induction of host defence enzymes by the endophytic bacterium Serratia marcescens, in banana plantlets. International Journal of Pest Management, 56: 183-188. doi: 10.1080/09670870903324198.

Trienens, M., Kraaijeveld, K. & Wertheim, B. (2017). Defensive repertoire of Drosophila larvae in response to toxic fungi. Molecular Ecology, 26: 5043-5057. doi: 10.1111/mec.14254.

Vontas, J., Blass, C., Koutsos, A.C., David, J.P., Kafatos, F.C., Louis, C., Hemingway, J., Christophides, G.K. & Ranson, H. (2005). Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Molecular Biology, 14: 509-521. doi: 10.11 11/j.1365-2583.2005.00582.x.

Wang, K., Yan, P.S., Cao, L.X., Ding, Q.L., Shao, C. & Zhao, T.F. (2013). Potential of chitinolytic Serratia marcescens Strain JPP1 for biological control of aspergillus parasiticus and aflatoxin. Biomed Research International, 2013: 397142. doi: 10.1155/2013/397142.

Werck-Reichhart, D., Hehn, A. & Didierjean, L. (2000). Cytochromes P450 for engineering herbicide tolerance. Trends in Plant Science, 5: 116-123. doi: 10.1016/S1360-1385(00)01567-3.

Wu, H.D., Liu, Q.Z., Li, X.Y., Wang, Y.L. & Zhang, H. (2013). Activities of four enzymes in Galleria mellonella larvae infected with entomopathogenic nematode Heterorhabditis beicherriana n. sp. African Journal of Agricultural Research 8: 3245-3250. doi: 10.5897/AJAR11.743.

Xie, Y.J. (2013). Study on chemical composition and insecticidal activity against Reticulitermes chinensis Snyder of cryptomeria fortunei essential oil. http://d.wanfangdata.com.cn/thesis/Y2394831. (accessed date: 6 January, 2021).

Xiong, H.P., Xue, K.N., Qin, W.Q., Chen, X., Wang, H.F., Shi, X.H., Ma, T., Sun, Z.H., Chen, W.G., Tian, X.Q., Lin, W., Wen, X.J. & Wang, C. (2018). Does soil treated with conidial formulations of Trichoderma spp. attract or repel subterranean termites? Journal of Economic Entomology, 111: 808-816. doi: 10.1093/jee/toy021.

Yanagawa, A., Yokohari, F. & Shimizu, S. (2010). Influence of fungal odor on grooming behavior of the termite, Coptotermes formosanus. Journal of Insect Science, 10: 141. doi: 10.1673/031.010.14101.

Yang, N., Xie, W., Yang, X., Wang, S.L., Wu, Q.J., Li, R.M., Pan, H.P., Liu, B.M., Shi, X.B., Fang, Y., Xu, B.Y., Zhou, X.G. & Zhang, Y.J. (2013). Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam. PLoS One, 8: e61820. doi: 10.1371/journal.pone.0061820.

Zhou, W.W., Liang, Q.M., Xu, Y., Gurr, G.M., Bao, Y.Y., Zhou, X.P., Zhang, C.X., Cheng, J. & Zhu, Z.R. (2013). Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stl) and Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). PLoS One 8: e56604. doi: 10.1371/journal.pone.0056604.

Zhou, X., Fan, X., Gao, Y. L., Yang, J., Qian, J. & Fan, D. (2017). Identification of two novel P450 genes and their responses to deltamethrin in the cabbage moth, Mamestra brassicae Linnaeus. Pesticide Biochemistry and Physiology, 141: 76-83. doi: 10.1016/j.pestbp.2016.12.001.

Zhou, X., Song, C., Grzymala, T.L., Oi, F.M. & Scharf, M.E. (2006). Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes. Insect Molecular Biology, 15: 749-761. doi: 10.1111/j.1365-2583.2006.00675.x.

Downloads

Published

2021-04-15

How to Cite

Lu, X., Nong, M., Feng, K., Xu, M., & Tang, F. (2021). Response of Three Kinds of Detoxifying Enzymes from Odontotermes formosanus (Shiraki) to the Stress Caused by Serratia marcescens Bizio (SM1). Sociobiology, 68(2), e5945. https://doi.org/10.13102/sociobiology.v68i2.5945

Issue

Section

Research Article - Termites