Colony Transport Affects the Expression of Some Genes Related to the Apis mellifera L. Immune System


  • Maurice Fabian Scaloppi Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP – São Paulo State University, Botucatu, Brazil
  • Samir Moura Kadri Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP – São Paulo State University, Botucatu, Brazil
  • Daniel Diego Mendes Center of Education, Science and Technology in Rational Beekeeping (NECTAR), College of Veterinary Medicine and Animal Sciences, UNESP – São Paulo State University, Botucatu, Brazil
  • Paulo Eduardo Martins Ribolla Institute of Biotechnology, UNESP - São Paulo State University, São Paulo, Botucatu, Brazil
  • Ricardo de Oliveira Orsi Departamento de Produção Animal e Medicina Veterinária Preventiva - Faculdade de Medicina Veterinária e Zootecnia - Universidade Estadual Paulista - UNESP - Campus de Botucatu - São Paulo



beekeeping, colony transportation, stress, transportation management, welfare


Migratory beekeeping can harm the bee colonies if not executed properly. Here, colonies of Apis mellifera were transported (for one or two hours) or not, following proper technical standards. To analyze gene expression (defensin-1, abaecin, and HSP70), forager bees were collected immediately, 24, and 72 hours after transportation. Bee mortality and population growth were measured before and after transportation. This study concludes that transporting honey bee colonies for 2 hours promotes immune system gene expression, although there are no significant changes in bee mortality and population growth of the colonies.


Download data is not yet available.


Accorti, M., Luti, F. & Tarducci, F. (1991). Methods for collecting data on natural mortality in bees. Ethology Ecology and Evolution, 3: 123-126. doi: 10.1080/03949370. 1991.10721924

Ahn, K., Xie, X., Riddle, J., Pettis, J. & Huang, Z.Y. (2012). Effects of long distance transportation on honey bee physiology. Psyche: A Journal of Entomology. Special Issue. 1-10. doi: 10.1155/2012/193029

Alger, S.A., Burnham, P.A., Lamas, Z.S., Brody, A.K. & Richardson, L.L. (2018). Homesick: impacts of migratory beekeeping on honey bee (Apis mellifera) pests, pathogens, and colony size. PeerJ, 6: e5812. doi: 10.7717/peerj.5812

Al-Tikrity W.S., Hillmann R.C., Benton A.W. & Clarke W.W. (1971). A new instrument for brood measurement in a honeybee colony. American Bee Journal, 111: 20-26.

Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P. & Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11: 2284-2290. doi: 10.1111/j.1462-2920.2009.01953.x

Aronstein, K. & Saldivar, E. (2005). Characterization of a honey bee Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense. Apidologie, 36:3-14. doi: 10.1051/apido:2004062

Bordier, C., Klein, S., Le Conte, Y., Barron, A.B. & Alaux, C. (2018). Stress decreases pollen foraging performance in honeybees. Journal of Experimental Biology, 221: 1-5. doi: 10.1242/jeb.171470

Bordier, C., Suchail, S., Pioz, M., Devaud, J.M., Collet, C., Charreton, M., Conte, Y.L. & Alaux, C. (2017). Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism. Journal of Insect Physiology, 98: 47-54. doi: 10.1016/j.jinsphys.2016.11.013

Casteels, P., Ampe, C., Rivière, L., Van Damme, J., Elicone, C., Fleming, M., Jacobs, F. & Tempst, P. (1990). Isolation and characterization of abaecin, a major antibacterial response peptide in the honeybee (Apis mellifera). European Journal of Biochemistry, 187: 381-386. doi: 10.1111/j.1432-1033.1990.tb15315.x

Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J.D. & Pettis, J.S. (2012). Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 58: 1090-1095. doi: 10.1016/j.jinsphys.2012.04.016

Crane, E. (1999). The world history of beekeeping and honey hunting. Routledge. 682p.

Cunha, A.R. & Martins, D. (2009). Classificação climática para os municípios de Botucatu e São Manuel, SP. Irriga, 14: 1-11. doi: 10.15809/irriga.2009v14n1p1-11

Elsik, C.G., Worley, K.C., Bennett, A.K., Beye, M., Camara, F., Childers, C.P. & Elhaik, E. (2014). Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 15: 86. doi: 10.1186/1471-2164-15-86

Even, N., Devaud, J.M., & Barron, A.B. (2012). General stress responses in the honey bee. Insects, 3: 1271-1298. doi: 10.3390/insects3041271

Evans, J.D. (2004). Transcriptional immune responses by honey bee larvae during the invasion by the bacterial pathogen, Paenibacillus larvae. Journal of Invertebrate Pathology, 85: 105-111. doi: 10.1016/j.jip.2004.02.004

Glenny, W., Cavigli, I., Daughenbaugh, K.F., Radford, R., Kegley, S.E. & Flenniken, M.L. (2017). Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PloS one, 12: e0182814. doi: 10.1371/journal.pone.0182814

Goulson, D., Nicholls, E., Botías, C. & Rotheray, E.L. (2015). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347: 1255957. doi: 10.1126/science.1255957

Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443: 931-949. doi: 10.1038/nature05260

Iwasaki, A. & Medzhitov, R. (2015). Control of adaptive immunity by the innate immune system. Nature Immunology, 16: 343-353. doi: 10.1038/ni.3123

Lourenço, A.P., Florecki, M.M., Simões, Z.L.P. & Evans, J.D. (2018). Silencing of Apis mellifera dorsal genes reveals their role in expression of the antimicrobial peptide defensin-1. Insect Molecular Biology, 27: 577-589. doi: 10.1111/imb.12498

Maderson, S. & Wynne-Jones, S. (2016). Beekeepers’ knowledges and participation in pollinator conservation policy. Journal of Rural Studies, 45: 88-98. doi: 10.1016/j.jrurstud.2016.02.015

Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P.U. (2013). Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. Journal of Environmental Immunology and Toxicology, 1: 3-12. doi: 10.7178/jeit.1

Nation, J.L. (2015). Insect Physiology and Biochemistry. Boca Raton: CRC Press. 690p.

Navajas, M., Migeon, A., Alaux, C., Martin-Magniette, M.L., Robinson, G.E., Evans, J.D. & Le Conte, Y. (2008). Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics, 9: 1-11. doi: 10.1186/1471-2164-9-301

Nazzi, F. & Pennacchio, F. (2014). Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 30: 556-561. doi: 10.1016/

Pfaffl, M.W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Research, 29: e45. doi: 10.1093/nar/29.9.e45

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin, W.E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution, 25: 345-353. doi: 10.1016/j.tree.2010.01.007

Randolt, K., Gimple, O., Geissendörfer, J., Reinders, J., Prusko, C., Mueller, M.J. & Beier, H. (2008). Immune-related proteins induced in the haemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Archives of Insect Biochemistry and Physiology, 69: 155-167. doi: 10.1002/arch.20269

Richard, F.J., Holt, H.L. & Grozinger, C.M. (2012). Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics, 13: 1-18. doi: 10.1186/1471-2164- 13-558

Sahebzadeh, N. & Lau, W.H. (2017). Expression of heat-shock protein genes in Apis mellifera meda (Hymenoptera: Apidae) after exposure to monoterpenoids and infestation by Varroa destructor mites (Acari: Varroidae). European Journal of Entomology, 114: 195-202. doi: 10.14411/eje.2017.024

Scharlaken, B., de Graaf, D.C., Goossens, K., Peelman, L.J., & Jacobs, F.J. (2008). Differential gene expression in the honeybee head after a bacterial challenge. Developmental and Comparative Immunology, 32: 883-889. doi: 10.1016/j.dci.2008.01.010

Schlüns, H. & Crozier, R.H. (2007). Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. Insect Molecular Biology, 16: 753-759. doi: 10.1111/j.1365-2583.2007.00768.x

Siede, R., Meixner, M.D. & Büchler, R. (2012). Comparison of transcriptional changes of immune genes to experimental challenge in the honey bee (Apis mellifera). Journal of Apicultural Research, 51: 320-328. doi: 10.3896/IBRA.

Simone-Finstrom, M., Li-Byarlay, H., Huang, M.H., Strand, M.K., Rueppell, O. & Tarpy, D.R. (2016). Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scientific Reports, 6: 1-10. doi: 10.1038/srep32023

Whynott, D. (1991). Following the bloom: across America with the migratory beekeepers. Stackpole Books. 214p.

Yang, X. & Cox-Foster, D.L. (2005). Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proceedings of the National Academy of Sciences, 102: 7470-7475. doi: 10.1073/pnas.0501860102

Zar, J.H. (1996). Bioestatistical Analysis. New Jersey: Pretince Hall.

Zhu, X., Zhou, S. & Huang, Z.Y. (2014). Transportation and pollination service increase abundance and prevalence of Nosema ceranae in honey bees (Apis mellifera). Journal of Apicultural Research, 53: 469-471. doi: 10.3896/IBRA.




How to Cite

Scaloppi, M. F., Kadri, S. M., Mendes, D. D., Ribolla, P. E. M., & Orsi, R. de O. (2022). Colony Transport Affects the Expression of Some Genes Related to the Apis mellifera L. Immune System. Sociobiology, 69(4), e7522.



Research Article - Bees

Most read articles by the same author(s)