SHORT NOTE

Genetic Characterization of *Melipona subnitida* Stingless Bee in Brazilian Northeast

MM Barbosa¹, V Bonatti¹, JS Galaschi-Teixeira², MMC Rêgo¹, TM Francoy⁴

1 - Universidade Federal do Maranhão, São Luís, Brazil
2 - Faculdade de Medicina de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
3 - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, Brazil
4 - Escola de Artes, Ciências e Humanidades - Universidade de São Paulo, São Paulo, Brazil

Article History

Edited by
Solange Augusto, UFU, Brazil
Received 02 May 2018
Initial acceptance 11 June 2018
Final acceptance 23 September 2019
Publication date 30 December 2019

Keywords
Conservation, habitat, haplotypes, pollinators, mitochondrial DNA.

Corresponding author
Marcela de Matos Barbosa
Universidade Federal do Maranhão
Departamento de Biologia
Laboratório de Estudos sobre Abelhas
Av. dos Portugueses nº 1966
E-Mail: marmbarbosa5@gmail.com

Abstract

The study of *M. subnitida*, a stingless bee well adapted to extreme environmental conditions, is noteworthy once the Northeastern Brazil faces climate changing predictions in which the precipitation rates are expected to decrease, and the average of temperatures to increase. The well-studied populations are limited to the Caatinga biome, where the species was considered endemic. However, the occurrence of this species has been reported in contrasting environments from arid region, such as mangrove and sandbanks in Maranhão state. Our primary goal was to characterize samples from these different environments and compare them with previously studied populations. We identified a unique mitochondrial haplotype per region. The haplotype found in Lençóis Maranhenses National Park was exclusive from this location and differed regarding the amino acid sequence when compared to the literature presented haplotypes from Caatinga, which might be related with different evolutionary processes in the distinct environments, though further studies are needed to confirm.

Melipona subnitida is highly adapted to extreme environmental conditions and can survive under long drought periods, since during water and resource scarcity, the bees reduce the colony size to a minimum number of brood and workers. Thus, the species maintains only essential tasks for the nest, being an important mechanism to save the resources stored during the bloom of rainy periods (Maia et al., 2014; 2015). Assuming the climate change predictions for Northeastern Brazil (Marengo et al., 2011) in the semi-arid region, where average reductions in precipitation rates of up to 40–50% are expected (PBMC, 2013), the study bees resistant to these conditions, such as *M. subnitida*, is noteworthy. Considering the importance of this species regarding resistance to extreme climatic conditions, distributional modeling studies have suggested a shift in the potential occurrence area of *M. subnitida* and its main resource plant for the near future (Maia et al., 2014; 2015; Giannini et al., 2017). Even though the impact of climate change on geographic distribution of this native bee is predictable, studies dedicated to understand how its genetic variability is distributed are still scant.

M. subnitida is usually considered endemic from the Caatinga (Zanella & Martins, 2002), but it has been observed in biomes with distinct landscapes from semi-arid region, such as in the coast of Maranhão, in Lençôis Maranhenses National Park (PNLM) (Rêgo & Albuquerque, 2006) and in Ilha Grande dos Paulinos (Rêgo et al., 2017) (Fig 1). These areas, unlike Caatinga biome, are composed of sand dunes and lakes, annual rainfall ranging from 1600 to 1800 mm (IBAMA, 2002) and surrounded by mangrove.
The populations of *M. subnitida* present in such areas differed regarding the tree species used as nesting sites often found in the Caatinga region (Câmara et al., 2004; Bruening 2006; Rêgo et al., 2017). In order to evaluate if differences among bees are restricted to behavioral characteristic or if they are reflected in the genetic signatures, we have genetically compared populations from Maranhão with mitochondrial haplotype data available in the literature.

We searched for natural nests and sampled 28 workers of *M. subnitida* in PNLM (20) and in Ilha Grande dos Paulinos (8) and the nests were approximately 1km apart from each other. The bees were stored at -20°C and DNA was extracted from antennae of one bee per colony using Chelex method (Walsh et al., 1991). For analysis of the cytochrome c oxidase I (COI) gene partial sequence were used primers mtD6 and mtD9 (Simon et al., 1994). For PCR it was used 5μL of DNA, 2.5 μL of each primer, 25 μL of 10x PCR buffer and 15 μL of nuclease-free water. Genetic material was amplified, sequenced and analyzed as described in Bonatti et al. (2014).

We amplified a 436pb of COI gene fragments from 28 individuals. These sequences were compared to 11 haplotypes from Bonatti et al. (2014), which sampled individuals from Maranhão, Piauí, Ceará and Rio Grande do Norte states of Northeastern Brazil. Haplotypes network was built using Network software v.4.6 (Polzin & Daneshmand, 2003) and MEGA software v.7.0.14 (Tamura et al., 2011) to calculate the distances among haplotypes using Tamura 3-parameter with Gamma distribution (T92+G).

Our results found one haplotype per sampled region. Nonetheless, the haplotype H4 (in Ilha Grande dos Paulinos) was shared with Mossoró-RN, Fortaleza-CE, Jandaíra-RN and Parnaíba-PI populations (Table 1) previously analyzed by Bonatti et al. (2014) and identified likely as ancestral haplotype.

On the other hand, the PNLM had its unique haplotype, H12, not shared with any other areas (Fig 2). This haplotype diverges from H7 (found in Barreirinhas-MA and Parnaíba-PI) and H10 (found in Fortaleza-CE) by a single mutational step (Fig 2A). According to the genetic proximity between H7 and H12 haplotypes, showed by dendrogram (Fig 2B) and geographic distance between Barreirinhas and PNLM, we believe the H7 may have originated H12.

Bonatti et al. (2014) also observed one exclusive mitochondrial haplotype per locality as occurred in PNLM. This pattern may be associated with the process of colonization of new areas in Meliponini by one or few original colonies (Miranda et al., 2016). Furthermore, the low dispersal ability of daughter colonies during swarming process, the dependence upon mother colony, as well as the queen philopatry may help to explain these patterns (Nogueira-Neto, 1954; Engels & Imperatriz-Fonseca, 1990). Other researches using population genetic approaches with different stingless bee species have

Table 1. Localities where each haplotype are originally found.

<table>
<thead>
<tr>
<th>Haplotypes</th>
<th>Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Mossoró; Parnaiba</td>
</tr>
<tr>
<td>H2</td>
<td>Jandaíra</td>
</tr>
<tr>
<td>H3</td>
<td>Jandaíra</td>
</tr>
<tr>
<td>H4*</td>
<td>Mossoró; Jandaíra; Parnaíba; Fortaleza; Ilha Grande dos Paulinos</td>
</tr>
<tr>
<td>H5</td>
<td>Areia Branca; Jandaíra; Parnaíba</td>
</tr>
<tr>
<td>H6</td>
<td>Jandaíra</td>
</tr>
<tr>
<td>H7</td>
<td>Barreirinhas; Parnaiba</td>
</tr>
<tr>
<td>H8</td>
<td>Fortaleza</td>
</tr>
<tr>
<td>H9</td>
<td>Barreirinhas</td>
</tr>
<tr>
<td>H10</td>
<td>Fortaleza</td>
</tr>
<tr>
<td>H11</td>
<td>Areia Branca</td>
</tr>
<tr>
<td>H12*</td>
<td>PNLM</td>
</tr>
</tbody>
</table>

*Haplotypes found in this present work
also found similar results (Tavares et al., 2007; Francisco et al., 2008; Batalha-Filho et al., 2010; Brito et al., 2013; Bonatti et al., 2014, Miranda et al. 2016; Galaschi-Teixeira et al., 2018). When we analyzed and compared the DNA sequence of the two haplotypes identified here (H4 and H12), we observed that they differed from each other in two mutational steps. The replacement of a guanine by an adenine at 128 position translates into changes in one amino acid (valine-isoleucine). This non-synonymous change at the amino acid level was not observed in Bonatti et al. (2014) where all mutations found in the 11 haplotypes were neutral, but has been observed in Brito et al. (2013) for *Partomana mulata*.

It is noteworthy that, albeit it has been observed that *M. subnitida* has a wide flight range (Silva et al., 2014), the dunes might act as geographic barriers, hindering the gene flow among these populations. These dunes are surrounded by lakes, and altogether they form a large complex of landscape without any vegetation or any other substrate, which could allow bee dispersion to long distances.

The change in the amino acid sequence of COI protein from PNLM may reflect a random factor or it may be the result of selective pressures driven by the environment where these bees live. These areas differ in the type of trees where they build their nests, climatic conditions, and vegetation structures.

Notwithstanding, the natural process of desertification may play a role limiting gene flow among populations, since the movement of dunes ends up covering green areas, limiting the few chances of nesting sites. Genomic studies with a more thorough sampling will be necessary to better understand the evolutionary history of bees in this region.

Acknowledgments

We thank Irene Aguiar, Mr. Emídio and Mrs. Maria for letting us develop field work inside their land and their assistance guiding us through the areas to find bee nests. The authors are also grateful to the anonymous referees for comments and suggestions. To CNPQ for the first author’s masters scholarship and for research support.

Authors Contributions

The authors provided performance data and genetic analysis, including laboratories procedures and availability of laboratory from University of São Paulo, Ribeirão Preto.

References

and historical demography of the Neotropical stingless bee *Melipona quadridfasciata* (Hym., Apidae): Incongruence between morphology and mitochondrial DNA. Apidologie, 41: 534-547. doi: 10.1051/apido/2010001

