Natural Biological Control of *Diaphania* spp. (Lepidoptera: Crambidae) by Social Wasps

by

Paulo Antônio Santana Júnior¹, Alfredo Henrique Rocha Gonring², Marcelo Coutinho Picanço¹, Rodrigo Soares Ramos¹, Júlio Cláudio Martins¹ & Dalton de Oliveira Ferreira¹

ABSTRACT

The social wasps (Hymenoptera: Vespidae) are important agents of biological control for agricultural pests. *Diaphania hyalinata* L. and *Diaphania nitidalis* Cramer (Lepidoptera: Crambidae) are among the main pests of plants in the Cucurbitaceae family. Although the importance of social wasps is acknowledged, little is known about their activity as biological control agents in *Diaphania* spp. Thus, this work aimed to study the natural biological control of the caterpillars *D. hyalinata* and *D. nitidalis* by social wasps. We studied the natural biological control of caterpillars of *D. hyalinata* and *D. nitidalis* on cucumber hybrids Sprint 440 II and Vlasstar. The main predators of *Diaphania* caterpillars were the social wasps, followed by Diptera: Syrphidae; Hemiptera: Anthocoridae; Coleoptera: Coccinellidae, Anthicidae; Neuroptera: Chrysopidae and Arachnida: Araneae. Predation of *D. hyalinata* caterpillars by social wasps was high from the second to fifth instar. The predation of *D. nitidalis* caterpillars by social wasps was high from the second to fourth instar. There was no predation by social wasps on the first instar larvae of *Diaphania* spp. The cucumber hybrids did not influence the predation of *Diaphania* spp. by social wasps. The main social wasp predator of *Diaphania* spp. was *Polybia ignobilis* (Haliday). Also, we observed the social wasp *Polybia scutellaris* (White) preying on *D. hyalinata* but at low intensity.

Key words: Social insects, Vespidae, *Diaphania hyalinata*, *Diaphania nitidalis*, Cucurbitaceae, predators.

INTRODUCTION

The family Vespidae has social and solitary species. The social Vespidae belong to three subfamilies: Stenogastrinae, Polistinae and Vespinae (Car-

¹ Federal University of Viçosa, Department of Entomology, 36570-000, Viçosa, MG, Brazil, ²DuPont do Brasil S.A. *E-mail: picanço@ufv.br
Stenogastrinae is the smallest of social subfamilies and it has about 50 species and six genera. It occurs in Asia and Oceania (Carpenter & Kojima 1997). The subfamily Polistinae has more than 900 described species and it occurs in Europe and the Americas (Carpenter et al. 1996). The Vespinae have about 60 species and 40 genera and occur in the Northern Hemisphere (O’Donnell 1998).

The colonies of social Vespidae are arranged in nests that have few or hundreds of individuals. In the social organization of individuals Vespidae belongs to castes. In this social organization there is a division of labor that allows greater efficiency in caring for their offspring and in locating and gathering resources. In the nests there are one or few queens, sterile workers (who usually do not differ morphologically from queens), young (eggs, larvae and pupae) and drones. The queens have reproductive function and control of the colony. The workers look after the colony and collect the resources used in the nests. The drones mate with queens during nuptial flights and afterwards they die (Richter 2000, Kasper et al. 2004).

During foraging, Vespidae workers collect water, plant fibers, carbohydrates and proteins. Water and fiber are used for nest building. The carbohydrate sources used by Vespidae are: nectar, fruit pulp and plant sap. The nectar can be converted into honey. Honey is a source of food reserves. The adult workers chew their prey and feed the larvae by trophallaxis. As adults are unable to eat solid food the larvae regurgitate a solution containing carbohydrates and protein for the feeding of adult workers (Richter 2000, Kasper et al. 2004).

The food consumed by the social Vespidae is important in maintaining the colonies, especially protein intake. The proteins used by the social Vespidae are obtained mainly by predation on insects by their workers. Their main prey are insects of the order Diptera, Hemiptera, Hymenoptera and Lepidoptera (Gobbi & Machado 1986, Richter 2000). Thus, the social Vespidae are considered important agents of biological pest control (Picanço et al. 2010, Picanço et al. 2011). Among the major pests of Cucurbitaceae (pumpkin, squash, luffa plant, bur cucumber, cucumber, melon and watermelon) are Diaphania hyalinata L. and Diaphania nitidalis Cramer (Lepidoptera: Crambidae) (Bacci et al. 2006). The caterpillars of these species cause damage to plants by feeding on leaves, stems, flowers and fruits. These pests occur in South America (Gonring et al. 2003a, 2003b), Central America
(King & Saunders 1984) and North America (Penã et al. 1987). Although the importance of social wasps is acknowledged, little is known about their activity as biological control agents of Diaphania spp. Thus, this work aimed to study the natural biological control in the caterpillars of D. hyalinata and D. nitidalis by social Vespidae.

MATERIAL AND METHODS

This work was conducted in a cucumber crop in Viçosa (20°48'45"S, 42°56'15"W, altitude of 660m), Minas Gerais State, Brazil from April to July 2000. In the cultivation of cucumber hybrids Sprint II 440 (dark green fruit for fresh consumption) and Vlasstar (light green fruit for fresh consumption or as pickles) were used. The experimental design was randomized blocks with five replications. The repetition had six rows of nine plants. Thus, each repetition had 54 plants. No pesticides were applied to the crop, and conventional cultivation practices were employed, according to Filgueira (2000).

In each repetition, 20 plants were infested with caterpillars. The plants were about 60 days old when they were infested. Ten of these plants were infested with D. hyalinata and the other 10 plants were infested with D. nitidalis. The plants were subdivided into five groups of two plants. Each plant in the group was infested with 10 larvae from one of five larval instars. Therefore, each repetition received 100 larvae of each Diaphania species. The infestation was carried out in the third leaf from the top of the branch. Those plants received a tag identifying the species and instar of Diaphania with which it was infested. The caterpillars used were obtained from laboratory rearing. This creation was conducted according to Pratissoli et al. (2008).

During each instar, the mortality of Diaphania caterpillars was monitored. From sunrise to sunset we evaluated the causes of death to each caterpillar. Predators observed preying on caterpillars were recorded according to their morphospecies. In unmarked plants, individuals of the predator morphospecies were collected and assembled. Later on, after the change of instar, the caterpillars that were not dead were collected in plastic pots of 500 mL. The pots were taken to laboratory for evaluation of parasitized caterpillars. The emerged parasitoids were collected. In the laboratory the caterpillars were reared according Pratissoli et al. (2008). Specimens of predators and parasitoids were identified in the Entomological Museum of the Federal University
of Viçosa. The average mortality of *Diaphania* caterpillars were calculated from the experimental data. We also calculated the 95% confidence intervals of mortality rates.

RESULTS AND DISCUSSION

Predators were the group of natural enemy that caused higher mortality in *Diaphania* spp. caterpillars. These natural enemies were responsible for 98% of the natural mortality of larvae of *D. hyalinata* and *D. nitidalis* (Fig. 1A). The observation of a higher natural biological control in *Diaphania* by predators than by parasitoids is due to several factors. Among the factors that contribute to the high efficiency of the predators are: search capability, consumption of prey, adaptability to the environment and competitiveness. The increased competitiveness of predators makes them often prefer to consume parasitized prey (Reis Jr. *et al.* 2000), or they consume larvae of parasitoids within herbivorous insects (Leite *et al.* 2001).

We observed that the main group of predators of *Diaphania* spp. caterpillars were the social Vespidae, followed by Diptera: Syrphidae; Hemiptera: Anthocoridae; Coleoptera: Coccinellidae, Anthicidae; Neuroptera: Chrysopidae and Arachnida: Araneae. We also observed parasitism on caterpillars by Diptera: Tachinidae and Hymenoptera: Braconidae (Fig. 1B). The superiority of natural control in *Diaphania* spp. by the social Vespidae is likely due to their social organization, search capabilities and competitiveness. The social organization of Vespidae enables the division of labor between the components of the colony. This fact allows the wasps to locate their prey more efficiently and they capture a greater number of prey. Other authors found that the social Vespidae are also the most important predators of caterpillars such as *Ascia monuste* (Godart) (Pieridae) (Picanço *et al.* 2010), *Leucoptera coffeella* (Guérin-Méneville) (Lyonetiidae) (Pereira *et al.* 2007a, Pereira *et al.* 2007b) and *Tuta absoluta* (Meyrick) (Gelechiidae) (Picanço *et al.* 2011).

Due to the importance of social Vespidae as natural enemies of *Diaphania* spp. caterpillars their populations should be preserved or even increased in crops. Among the practices for preserving these predators are: the application of insecticides with physiological selectivity, the selective use of pesticides and reduced applications. The use of insecticides that show physiological selectivity is important because these products are effective in controlling pests and
they are somewhat toxic to natural enemies. In this context, Picanço et al. (1998) found that deltamethrin, permethrin and trichlorfon show ecological selectivity in favor of the social Vespidae.

The selective use of insecticides reduces the contact of natural enemies with these products. For the social wasps this can be achieved by the ap-

![Fig. 1. (A) Factors of mortality and (B) predators of Diaphania spp. caterpillars. Brackets indicate 95% Confidence interval.](image-url)
plication of pesticides during periods of low visitation of these predators to crops such as during times of lower air temperature (Picanço et al. 2010 Picanço et al. 2011). The reduction of pesticide use can be obtained by the use of decision-making systems to control application of pesticides (Bacci et al. 2008). Vespidae populations can be increased by providing food for these predators by planting flowering plants next to crops (Paula et al. 2004), preserving the forests that have trees that are the main nesting sites of the wasps (Picanço et al. 2010, Picanço et al. 2011) and transferring of Vespidae nests to crop sites (Prezoto & Machado 1999).

Predation of *D. hyalinata* by social wasps was high for 2nd, 3rd, 4th and 5th instar caterpillars. The predation of *D. nitidalis* by social wasps was high for 2nd, 3rd and 4th instars. There was no predation of first instar larvae in either *Diaphania* species by social wasps (Fig. 2A and 2B). The caterpillars increase the body mass as they grow and the wasps preferentially prey on the larger caterpillars, which represent a greater food resource and are more easily located. Corroborating this hypothesis Picanço et al. (2010) and Picanço et al. (2011) also observed that Vespidae do not catch first instar larvae of *A. monuste* and *T. absoluta*.

Among the fifth instar caterpillars, there was higher predation in *D. hyalinata* than *D. nitidalis* (Figs. 2A and 2B). This was possibly due to the location of these two species of *Diaphania* caterpillars during their larval instars. Caterpillars of *D. hyalinata* in all instars remain on the leaves, and are thus exposed to predation by social wasps (Gonring et al. 2003b). Conversely, *D. nitidalis* caterpillars in the last instar migrate into the interior of the fruit (Gonring et al. 2003a) thereby minimizing exposure to predation by social Vespidae.

The type of cucumber hybrid did not influence predation of *D. hyalinata* and *D. nitidalis* caterpillars by social wasps (Fig. 3A). This is possibly due to the fact that these predators primarily use chemical and visual cues in prey location and selection of prey. Corroborating this hypothesis Picanço et al. (2011) found that social Vespidae use visual and tactile signals in location and selection of *T. absoluta* larvae on tomato plants.

The main species of social Vespidae we observed preying on larvae of *D. hyalinata* and *D. nitidalis* was *Polybia ignobilis* (Haliday). We also observed the wasp *Polybia scutellaris* (White) preying on larvae of *D. hyalinata* at low
intensity, and this wasp was not observed preying \textit{D. nitidalis} (Fig. 3B). The predominance of predation of \textit{Diaphania} by \textit{P. ignobilis} is possibly due to the abundance of this wasp in various vegetation in both natural and cultivated areas (Hermes & Köhler 2006, Elpino-Campos \textit{et al.} 2007, Picanço \textit{et al.})

![Graphs showing mortality in the larval instars of \textit{Diaphania hyalinata} and \textit{Diaphania nitidalis} caused by social wasps. Brackets indicate 95% Confidence interval.]

Fig. 2. Mortality in the larval instars of (A) \textit{Diaphania hyalinata} and (B) \textit{Diaphania nitidalis} caused by social wasps. Brackets indicate 95% Confidence interval.
$P. scutellaris$ occurs mainly in areas close to forests (Machado & Parra 1984). Moreover, $P. ignobilis$ has a large foraging area which has a radius greater than 500m (Raw 1998) while the foraging area of $P. scutellaris$ has a radius of 150m (Machado & Parra 1984). The colonies of $P. ignobilis$ have more workers than $P. scutellaris$ (Raw 1998, Santos et al. 2007). As seen in

![Fig. 3. Mortality of Diaphania hyalinata and Diaphania nitidalis caused by wasps as a function of (A) cucumber hybrids and (B) species of Vespidae. Brackets indicate 95% Confidence interval.](image)
this work for *Diaphania* spp., Gomes *et al.* (2007) (for fly larvae) and Picanço *et al.* (2010) (for *A. monuste* caterpillars) observed high efficiency of insect predation by *P. ignobilis*.

In conclusion, our results demonstrate the importance of social wasps as natural enemies of *D. hyalinata* and *D. nitidalis* and allowed the identification of key species of *Vespidae* predators of these pests. This knowledge should be considered when planning pest management programs in order to preserve these predators and maximize their performance in biological pest control.

ACKNOWLEDGMENT

We wish to thank CAPES, CNPq and FAPEMIG for their financial support.

REFERENCES

