Ant Fauna on Cecropia pachystachya Trécul (Urticaceae) Trees in an Atlantic Forest Area, Southeastern Brazil

Paula CJ Reis, Wesley D DaRocha, Luiz AD Falcão, Tadeu J Guerra, Frederico S Neves


Cecropia are pioneer successional trees frequently associated with ants. Generally a single dominant colony of Azteca ant inhabits each mature Cecropia tree, but other ant species may be found living or foraging on the same tree. In this study, we assessed the diversity of ant species on Cecropia pachystachya trees in two sites in the Brazilian Atlantic Forest: a dust-free roadside and a dusty roadside. We also investigated the influence of tree architecture on ant species richness. We found a total of 24 ant species distributed in 11 genera and five subfamilies on C. pachystachya trees; 18 in the dust-free roadside and 14 in the dusty roadside. We found up to five ant species on a single tree, but only Azteca alfari was frequently encountered. Ant species richness per tree did not differ significantly between sites and was related to tree architectural traits. On the other hand, ant species composition on trees differed significantly between sites. Our study indicates that heavy dust deposition on Cecropia trees may affect associated ant communities, not by changing ant species richness, but by causing different species to live and forage on trees under different dust exposure.


Azteca; road dust; roadside; plant architecture

Full Text:



Barbosa, N.P.U., Fernandes, G. W., Carneiro, M. A. A. & Carlos, L. A. (2010). Distribution of non-native invasive species and soil properties in proximity to paved roads and unpaved roads in a quartzitic mountainous grassland of southeastern Brazil. Biol. Invasions, 12: 3745-3755. doi: 10.1007/s10530-010-9767-y

Bestelmeyer, B.T., Agosti, D., Alonso, L.E., Brandão, C.R.F., Brown, Jr.W.L., Delabie, J.H.C. & Silvestre, R. (2000). Field techniques for the study of ground-living ants: an overview, description, and evaluation. In: D. Agosti, J.D. Majer, L. Tennant de Alonso & T. Schultz (Eds.), Ants: Standard Methods for Measuring and Monitoring Biodiversity (pp. 122-144). Washington: Smithsonian Institution.

Brandão, C.R.F., Silva, R.R. & Delabie, J.H.C. (2011) Neotropical ants (Hymenoptera) functional groups: nutritional and applied implications. In: A.R. Panizzi & J.R.P. Parra (Eds.), Insect bioecology and nutrition for integrated pest management (pp. 213-236). Boca Raton: CRC.

Brito, F.R.A., Oliveira, A.M.H.C. & Junqueira, A.C. (1997). A ocupação do território e a devastação da Mata Atlântica. In J.A. Paula (Ed.), Biodiversidade, População e Economia: uma região de Mata Atlântica (pp. 49-89). Belo Horizonte: Cedeplar-UFMG.

Campos, R.I., Vasconcelos, H.L., Ribeiro, S.P., Neves, F.S. & Soares, J.P. (2006). Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography, 29: 442-450.

Clarke, K.R. (1993). Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol., 18: 117-143.

Colwell, R.K. (2006). EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.

Costa, F.V., Neves, F.S., Silva, J.O. & Fagundes, M. (2011). Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod Plant Interact., 5: 9-18. doi: 10.1007/s11829-010-9111-6

Crawley, M.J. (2007). Statistical computing-an introduction to data analysis using s-plus. London: John Wiley & Sons.

Espírito-Santo, M.M., Neves, F.S., Andrade-Neto, F.R. & Fernandes, G.W. (2007). Plant architecture and meristem dynamics as the mechanisms determining the diversity of gall-inducing insects. Oecologia, 153: 353-364. doi: 10.1007/s00442-007-0737-8

Farmer, A. (1993). The effects of dust on vegetation-a review. Environ. Pollut., 79: 63–75.

Forman, R.T.T. & Alexander, L.E. (1998). Roads and Their Major Ecological Effects. Annu. Rev. Ecol. Syst., 29: 207–231. doi: 10.1146/annurev.ecolsys.29.1.207

Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontol. Electronica, 4: 1–9.

Harada, A.Y. & Benson, W.W. (1988). Espécies de Azteca (Hymenoptera, Formicidae) especializadas em Cecropia (Moraceae): distribuição geográfica e considerações ecológicas. Rev. Bras. Entomol., 32: 423-435.

Haysom, K.A. & Coulson, J.C. (1998). The Lepidoptera fauna associated with Calluna vulgaris: effects of plant architecture on abundance and diversity. Ecol. Entomol., 23: 377-385.

Instituto Estadual de Florestas de Minas Gerais. (2012). (Accessed date: October 4th, 2012).

Lawton, J.H. (1983). Plant architecture and the diversity of phytophagous insects. Annu. Rev. Entomol., 28: 23-39.

Longino, J.T. (1991a). Taxonomy of the Cecropia-inhabiting Azteca ants. J. Nat. Hist., 25: 1571–1602.

Longino, J.T. (1991b). Azteca ants in Cecropia trees: taxonomy, colony structure, and behaviour. In: C.R. Huxley & D.R. Cutler (Eds.), Ant-plant interactions (pp. 271-288). Oxford: Oxford University Press.

Longino, J.T. (2002). (accessed date: April 12th, 2012).

Longino, J.T. (2003). The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa, 151: 1-150.

Neves, F.S., Sperber, C.F., Campos, R.I., Soares, J.P. & Ribeiro, S.P. (2013). Contrasting effects of sampling scale on insect herbivores distribution in response to canopy structure. Rev. Biol. Trop. (Int. J. Trop. Biol.), 61(1): 125-137.

R Development Core Team. (2008). R: A language and environment for statistical computing. (Accessed date: October 4th, 2012).

Ribas, C.R., Schoereder, J.H., Pic, M., Soares, S.M. (2003). Tree heterogeneity, resource availability, and larger scale processes regulating arboreal ant species richness. Austral Ecol., 28, 305–314. doi: 10.1046/j.1442-9993.2003.01290.x

Spellerberg, I. (1998). Ecological effects of roads and traffic: a literature review. Global Ecol. Biogeogr., 7: 317–333.

Sposito, T. C. S. & Santos, F.A.M. (2001). Architectural patterns of eight Cecropia (Cecropiaceae) species of Brazil. Flora 3: 215–226.

Tabarelli, M., Pinto, L.P., Bedê, L., Hirota, M. & Silva, J.M.C. (2005). Challenges and opportunities for biodiversity conservation in Brazilian Atlantic forest. Conserv. Biol., 3: 695–700. doi: 10.1111/j.1523-1739.2005.00694.x

Trombulak, S. & Frissell, C. (2000). Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol., 1, 18–30. doi: 10.1046/j.1523-1739.2000.99084.x

Vasconcelos, H. & Casimiro, A. (1997). Influence of Azteca alfari ants on the exploitation of Cecropia trees by a leaf-cutting ant. Biotropica, 29, 84–92. doi: 10.1111/j.1744-7429.1997.tb00009.x

Vieira, A.S., Faccenda, O., Antonialli-Junior, W.F., Fernandes, W.D. (2010). Nest structure and occurrence of three species of Azteca (Hymenoptera, Formicidae) in Cecropia pachystachya (Urticaceae) in non-floodable and floodable pantanal areas. Rev. Bras. Entomol., 54, 441–445. doi: 10.1590/S0085-56262010000300014

Von Matter, S., Naka, L., Fontoura, T., Santos, F.M., DaRocha, W.D. & Nüscheler, J. (2010). Técnicas para o estudo de aves em dosséis florestais. In: S. Von Matter, F.C. Strauber, I.A. Accordi, V.Q. Piacentini & J.F. Cândido-Jr. (Eds.), Ornitologia e Conservação: Ciência Aplicada, Técnicas de Pesquisa e Levantamento (pp. 105-165). Rio de Janeiro: Technical Books Editora.

Yu, D. & Davidson, D. (1997). Experimental studies of species-specificity in Cecropia-ant relationships. Ecol. Monogr., 67: 273–294. doi: 10.2307/2963456



  • There are currently no refbacks.

JCR Impact Factor 2018: 0.604