Survivorship and walking behavior of Inquilinitermes microcerus (Termitidae: Termitinae) in contact with host workers and walls from host nest

Joseane Santos Cruz, Paulo Fellipe Cristaldo, Jailton Jorge Marques Sacramento, Marcos Leandro da Rocha Cruz, Dinamarta Virginio Ferreira, Ana Paula Albano Araujo


Constrictotermes sp. nests are frequently inhabited by colonies of Inquilinitermes microcerus. In this association, I. microcerus colonies usually establish their colonies spatially isolated from Constrictotermes colonies. Here, we investigated whether the apparent spatial isolation of I. microcerus colonies in Constrictotermes nests should be related to their needs (e.g. feeding) in relation to the central part of the nest or to a possible stress provoked by the presence of the host. For this, survival and walking behavior bioassays were performed to test the hypothesis that the survivorship of inquilines is: (i) reduced in the presence of host, mainly of those from different nests, (ii) increased in contact with inner walls compared with external walls; and that the distance walked and walking velocity of inquiline is: (iii) increased in the presence of the host and (iv) reduced in contact with the internal walls compared with external walls of host nest. The mean time to death of inquiline workers is lower in contact with host (independently from the same or different nest) compared with control and the mean time to death of inquiline workers is lower in contact with external walls of host nest compared with control group and the inner walls. The distance walked and walking velocity of inquiline workers in contact with their hosts (from the same or different nest) did not differ from control, however, these parameters were reduced when workers were in contact with inner and external walls compared with control. In general, our results showed that I. microcerus adopt behavioral strategies to avoid perception by its host.


inquilines; Isoptera; symbiosis; behavior

Full Text:



Ackerman, I.L., Teixeira W.G., Riha S.J., Lehmann J.& Fernandes E.C.M. (2007). The impact of mound-building termites on surface soil properties in a secondary forest of Central Amazonia. Applied Soil Ecology, 37: 267–276.

Almeida, C.S., Cristaldo P.F., Florencio D.F., Cruz N.G., Santos A.A., Oliveira A.P., Santana A.S., Ribeiro E.J.M., Lima A.P.S., Bacci L. & Araújo A.P.A. (2016). Combined foraging strategies and soldier behaviour in Nasutitermes aff. coxipoensis (Blattodea: Termitoidea: Termitidae). Behavioural Processes, 126: 76–81.

Andara, C., Issa S. & Jaffé K. (2004). Decision-making systems in recruitment to food for two Nasutitermitinae (Isoptera: Termitidae). Sociobiology, 44: 139–151.

Barbosa-Silva, A.M., Farias M.A.A., Mello A.P., Souza A.E.F, Garcia H.H.M. & Bezerra-Gusmão M.A. (2016). Lignocellulosic fungi in nests and food content of Constrictotermes cyphergaster and Inquilinitermes fur (Isoptera, Termitidae) from the semiarid region of Brazil. Fungal Ecology, 20: 75–78.

Bourguignon, T. & Roisin Y. (2006). A new genus and three new species of termitophilous Staphylinids (Coleoptera: Staplylinidae) associated with Schedorhinotermes (Isoptera: Rhinotermitidae) in New Guinea. Sociobiology, 48: 1–13.

Bourguignon, T., Šobotník J., Lepoint G., Martin J.M., Hardy O.J., Dejean A. & Roisin Y. (2011). Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecological Entomology, 36: 261–269.

Brightsmith, D. (2000). Use of arboreal termitaria by nesting birds in the Peruvian Amazon. The Condor, 102: 529–538.

Campbell, C., Russo L., Marins A., Desouza O., Schönrogge K., Mortensen D., Tooker J., Albert R. & Shea K. (2016). Top-down network analysis characterizes hidden termite-termite interactions. Ecology and Evolution, 6: 6178–6188.

Constantino, R. (1999). Chave ilustrada para identificação dos gêneros de cupins (Insecta: Isoptera) que ocorrem no Brasil. Papéis Avulsos de Zoologia, 40: 387–448.

Constantino, R. (2005). Padrões de diversidade e endemismo de témitas no bioma Cerrado. In A.O. Scariot, J.C.S. Silva & J.M. Felfili (Eds.), Cerrado: ecologia, biodiversidade e conservação (pp. 319–333). Biodiversidade, Ecologia e Conservação do Cerrado. Ministério do Meio Ambiente, Brasília.

Constantino, R. & Costa-Leonardo A.M. (1997). A new of Constrictotermes from central Brazil with on mandibular glands of workers (Isoptera: Termitidae: Nasutitermitinae). Sociobiology, 30: 213–223.

Costa-Leonardo, A.M. (2002). Cupins-praga: Morfologia, Biologia e Controle. Rio Claro: Divisa Editora, 128p.

Costa-Leonardo, A.M., Casarin F.E. & Lima J.T. (2009). Chemical communication in Isoptera. Neotropical Entomology, 38: 1–6.

Costa, D.A., Carvalho R.A., Lima Filho G.F. & Brandão D. (2009). Inquilines and invertebrate fauna associated with termite nests of Cornitermes cumulans (Isoptera, Termitidae) in the Emas National Park, Mineiros, Goiás, Brazil. Sociobiology, 53: 443–453.

Cristaldo, P.F., DeSouza O., Krasulová J., Jirošová A., Kutalová K., Lima E.R., Šobotonik J. & Sillam-Dussès D. (2014). Mutual use of trail-following chemical cues by a termite host and its inquiline. PLoS ONE, 9: 1–9.

Cristaldo, P.F., Rodrigues V.B., Elliot S.L., Araújo A.P.A. & DeSouza O. (2016). Heterospecific detection of host alarm cues by an inquiline termite species (Blattodea: Isoptera: Termitidae). Animal Behaviour, 120: 43–49.

Cristaldo, P.F., Rosa C.S., Florencio D.F., Marins A. & DeSouza O. (2012). Termitarium volume as a determinant of invasion by obligatory termitophiles and inquilines in the nests of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae). Insectes Sociaux, 59: 541–548.

Cunha, H.F., Costa D.A., Filho E.K., Silva L.O., Brandão D. & Espírito-Santo Filho K. (2003). Relationship between Constrictotermes cyphergaster and inquiline termites in the Cerrado (Isoptera: Termitidae). Sociobiology, 42: 1–10.

Cunha, H.F. & Brandão D. (2000). Invertebrates associated with the neotropical termite Constrictotermes cyphergaster (Isoptera: Termitidae, Nasutitermitinae). Sociobiology, 37: 593–599.

Dangerfield, J.M., Mccarthy T.S. & Ellery W.N. (1998). The mound-building termite Macrotermes michaelseni as an ecosystem engineer. Journal of Tropical Ecology, 14: 507–520.

Davies, A.B., Levick S.R., Robertson M.P., van Rensburg B.J., Asner G.P. & Parr C.L. (2015). Termite mounds differ in their importance for herbivores across Savanna types, seasons and spatial scales. Oikos, 1–9.

Dechmann, D.K.N., Santana S.E. & Dumont E.R. (2009). Roost making in bats - adaptations for excavating active termite nests. Journal of Mammalogy, 90: 1461–1468.

Dimijian, G.G. (2000). Evolving together: the biology of symbiosis, part 1. BUMC Proceedings, 13: 217–26.

Dronnet, S., Simon X., Verhaeghe J., Rasmont P. & Errard C. (2005). Bumblebee inquilinism in Bombus (Fernalda epsithyrus) sylvestris (Hymenoptera, Apidae): behavioural and chemical analyses of host-parasite interactions. Apidologie, 36: 59–70.

Duarte, S., Silva F.C.P., Zauli D.A.G., Nicoli J.R. & Araújo F.G. (2014). Gram-negative intestinal indigenous microbiota from two siluriform fishes in a tropical reservoir. Brazilian Journal of Microbiology, 45: 1283–1292.

Emerson, A.E. & Krishna K. (1975). The termite family Serritermitidae ( Isoptera). Natural History, 1–31.

Engel, M.S., Grimaldi D.A. & Krishna K. (2009). Termites (Isoptera) their phylogeny, classification, and rise to ecological dominance. American Museum Novitates, 1–27.

Ferreira, E.V.O., Martins V., Junior A.V.I., Giasson E. & Nascimento P.C. (2011). Ação dos térmitas no solo. Ciência Rural, 41: 804–811.

Florencio, D.F., Marins A., Rosa C.S., Cristaldo P.F., Araújo A.P.A., Silva I.R. & DeSouza O. (2013). Diet segregation between cohabiting builder and inquiline termite species. PLoS ONE, 8: e66535.

Hughes, D.P., Pierce N.E. & Boomsma J.J. (2008). Social insect symbionts: evolution in homeostatic fortresses. Trends in Ecology and Evolution, 23: 672–677.

Jirošová, A., Sillam-Dussès D., Kyjaková P., Kalinová B., Dolejšová K., Jančařík A., Majer P., Cristaldo P.F. & Hanus R. (2016). Smells like home: chemically mediated co-habitation of two termite species in a single nest. Journal of Chemical Ecology, in press.

Jones, C.G., Lawton J.H. & Shachak M. (1994). Organism as ecosystem engineers. Oikos, 69: 373–386.

Jones, J.C. & Oldroyd B.P. (2006). Nest thermoregulation in social insects. Advances in Insect Physiology, 33: 153–191.

Jouquet, P., Boulain N., Gignoux J. & Lepage M. (2004). Association between subterranean termites and grasses in a West African savanna: Spatial pattern analysis shows a significant role for Odontotermes n. pauperans. Applied Soil Ecology, 27: 99–107.

Jouquet, P., Dauber J., Lagerlöf J., Lavelle P. & Lepage M. (2006). Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32: 153–164.

Jouquet, P., Tavernier V., Abbadie L. & Lepage M. (2005). Nests of subterranean fungus-growing termites (Isoptera, Macrotermitinae) as nutrient patches for grasses in savannah ecosystems. African Journal of Ecology, 43: 191–196.

Jouquet, P., Traoré S., Choosai C., Hartmann C. & Bignell D. (2011). Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology, 47: 215–222.

Lee, K.E. & Wood T.G. (1971). Termites and soil. New York: Academic Press London, 251p.

Lenoir, A., Hefetz A., Simon T. & Soroker V. (2001). Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera : Formicidae). Physiological Entomology, 26: 275–283.

Léonard, J. & Rajot J.L. (2001). Influence of termites on runoff and infiltration: quantification and analysis. Geoderma, 104: 17–40.

Lima, J.T. & Costa-Leonardo A.M. (2007). Recursos alimentares explorados pelos cupins ( Insecta : Isoptera ). Biota Neotropica, 7: 243–250.

Marins, A., Costa D., Russo L., Campbell C., Desouza O., Bjørnstad O.N. & Shea K. (2016). Termite cohabitation: The relative effect of biotic and abiotic factors on mound biodiversity. Ecological Entomology, 532–541.

Mathews, A.G.A. (1977). Studies on Termites from the Mato Grosso State, Brazil. Rio de Janeiro: Academia Brasileira de Ciências, 267p.

Noirot, C. & Darlington J.P.E.C. (2000). Termites: evolution, sociality, symbioses, ecology. In T. Abe, D.E. Bignell & M. Higashi (Eds.), Termite nests: architecture, regulation and defence (pp. 121–139). Netherlands:

Kluwer Academic.

Pidwirny, M. (2011). Köppen Climate Classification System.

Prestes, A.C. & Da Cunha H.F. (2012). Interações entre cupins (Isoptera) e formigas (Hymenoptera) co-habitantes em cupinzeiros epígeos. Revista de Biotecnologia & Ciência, 1: 50–60.

Prestwich, G.D. (1984). Defense mechanisms of termites. Annual Review of Entomology, 29: 201–232.

R Development Core Team. (2015). R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing. ISBN: 3-900051-07-0, Vienna, Austria.

Redford, K.H. (1984). The termitaria of Cornitermes cumulans (Isoptera, Termitidae) and their role in determining a potential keystone species. Biotropica, 16: 112–119.

Redman, R.S., Dunigan D.D. & Rodriguez R.J. (2001). Fungal symbiosis from mutualism to parasitism: Who controls the outcome, host or invader? New Phytologist, 151: 705–716.

Rosa, C.S., Marins A. & DeSouza O. (2008). Interactions between beetle larvae and their termite hosts (Coleoptera; Isoptera, Nasutitermitinae). Sociobiology, 51: 1–7.

Sledge, M.F., Dani F.R., Cervo R., Dapporto L. & Turillazzi S. (2001). Recognition of social parasites as nest-mates: adoption of colony-specific host cuticular odours by the paper wasp parasite Polistes sulcifer. Proceedings Biological Sciences, 268: 2253–2260.

Šobotník, J., Hanus R. & Roisin Y. (2008). Agonistic behavior of the termite Prorhinotermes canalifrons (Isoptera : Rhinotermitidae ). Journal Insect Behavior, 21: 521–534.

Thompson, G.G. & Thompson S.A. (2015). Termitaria are an important refuge for reptiles in the pilbara of Western Australia. Pacific Conservation Biology, 21: 1–8.

Traniello, J.F. (1981). Enemy deterrence in the recruitment strategy of a termite: Soldier-organized foraging in Nasutitermes costalis. Proceedings of the National Academy of Sciences of the United States of America, 78: 1976–1979.

Traniello, J.F. & Leuthold R.H. (1981). Behavior and ecology of foraging termites. In T. Abe, D.E. Bignell & M. Higashi (Eds.), Termites: evolution, sociality, symbioses, ecology (pp. 141-168). Dordrectht, Netherlands: Kluwer Academic Publishers.



  • There are currently no refbacks.

JCR Impact Factor 2018: 0.604