An Herbivore’s Thermal Tolerance is Higher Than That of the Ant Defenders in a Desert Protection Mutualism

Ginny Fitzpatrick, Goggy Davidowitz, Judith L Bronstein


In North American deserts, many species of cactus attract ants to their extrafloral nectaries; the ants actively defend the food source, and hence the plant, against herbivores. In thermally extreme environments, however, networks of positive and negative interactions like these are likely to be sensitive to the thermal limitations of each of the interacting species. We compared the thermal tolerance of a common phytophagous cactus bug, Narnia pallidicornis (Hemiptera: Coreidae), to that of the ants that defend the cactus Ferocactus wislizeni in the Sonoran Desert, USA. We used flow-through respirometry to experimentally determine the thermal limit of the herbivore and compared this to the thermal limits of the ant defenders, determined previously. In the field, we recorded herbivore frequency (proportion of plants with N. pallidicornis) and abundance (the number of N. pallidicornis per plant) in relation to ambient temperature, ant species presence and identity, and fruit production. We show that N. pallidicornis has a higher thermal tolerance than the four most common ant mutualists, and in the laboratory can survive very high temperatures, up to 43°C. Herbivore frequency and abundance in the field were not related to the daily high temperatures observed. Plants that were not defended by ants were occupied by more N. pallidicornis, although they showed no reduction in fruit set. Therefore, herbivory is likely to continue on fishhook barrel cacti even at high temperatures, especially those temperatures beyond the thermal tolerance of the ant defenders. The consequences of increased herbivory, however, remain unclear. Mutualisms are essential for ecosystem functioning; it is important to understand the thermal sensitivity of these interactions, especially in light of expected increases in global temperature regimes.


thermal ecology; herbivory; ant-plant interaction; Narnia; temperature

Full Text:



Angilletta, M.J. Jr. (2009) Thermal Adaptation: a Theoretical and Empirical Synthesis. Oxford University Press. Oxford, New York, USA.

Ayres, M. P., & Lombardero M.J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci. Total Environ., 262: 263-286. doi: 10.1016/s0048-9697(00)00528-3

Barton, B.T. (2011). Local adaptation to temperature conserves top-down control in a grassland food web. P. Roy. Soc. Lond. B Bio, 278 (1721): 3102-3107. doi: 10.1098/rspb.2011.0030

Beattie, A.J. (1985). The evolutionary ecology and ant-plant mutualisms. Cambridge University Press.

Becker, C.D., & Genoway, R.G. (1979). Evaluation of the critical thermal maximum for determining thermal tolerance of freshwater-fish. Environ. Biol. Fish., 4: 245-256.

Beitinger, T.L., Bennett W.A., & McCauley R.W. (2000). Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fish., 58: 237-275.

Berg, M.P., Kiers, E.T., Driessen, G., van der Heijden, M., Kooi, B.W., Kuenen, F., Liefting, M., Verhoef, H.A., & Ellers, J. (2010). Adapt or disperse: understanding species persistence in a changing world. Glob. Change Biol., 16: 587-598. doi: 10.1111/j.1365-2486.2009.02014.x

Berkelmans, R., & van Oppen, M.J.H. (2006). The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. P. Roy. Soc. Lond. B Bio, 273: 2305-2312. doi: 10.1098/rspb.2006.3567

Bronstein, J.L. & Barbosa, P. (2002) Multitrophic/multispecies mutualistic interactions: the role of non-mutualists in shaping and mediating mutualisms. In Multitrophic Level Interactions (eds B. Hawkins & T. Tsharntke), pp. 44-65. Cambridge University Press, Cambridge.

Chamberlain, S.A. & Holland, J.N. (2009) Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology, 90: 2384-2392.

Heil, M. & McKey, D. (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu. Rev. Ecol. Evol. System., 34: 425-453. doi: 10.1146/annurev.ecolsys.34.011802.132410

Huey, R. B., Crill, W.D., Kingsolver, J.G., & Weber, K.E. (1992). A method for rapid measurement of heat or cold resistance of small insects. Funct. Ecol. 6: 489-494.

IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Kersch, M.F., & Fonseca, C.R. (2005). Abiotic factors and the conditional outcome of an ant-plant mutualism. Ecology, 86: 2117-2126.

Kiers, E.T., Palmer, T.M., Ives, A.R., Bruno, J.F. & Bronstein, J.L. (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett., 13: 1459-1474. doi: 10.1111/j.1461-0248.2010.01538.x

Lanan, M.C., & Bronstein, J.L. (2013). An ants-eye view of an ant-plant protection mutualism. Oecologia, 172: 779-790. doi: 10.1007/s00442-012-2528-0

Marazzi, B., Bronstein, J.L., & Koptur S. (2013). The diversity, ecology and evolution of extrafloral nectaries: Current perspectives and future challenges. Ann. Bot., 111: 1243-1250.

McIntosh, M.E. (2002) Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Plant Ecol., 159: 1-13.

Miller, T.E.X., Tyre, A.J. & Louda, S.M. (2006) Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales. Am. Nat., 168, 608-616. doi: 10.1086/509610

Miller, T.E.X. (2007) Does having multiple partners weaken the benefits of facultative mutualism? A test with cacti and cactus-tending ants. Oikos, 116: 500-512. doi: 10.1111/j.2007.0030-1299.15317.x

Miller, T.E.X., Tenhumberg, B. & Louda, S.M. (2008) Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant. Am. Nat., 171: 141-149. doi: 10.1086/524961

Morris, W.F., Wilson, W.G., Bronstein, J.L. & Ness, J.H. (2005) Environmental forcing and the competitive dynamics of a guild of cactus-tending ant mutualists. Ecology, 86: 3190-3199.

Ness, J.H., Morris, W.F. & Bronstein, J.L. (2006) Integrating quality and quantity of mutualistic service to contrast ant species protecting Ferocactus wislizeni. Ecology, 87: 912-921.

Ness, J.H., Morris, W.F. & Bronstein, J.L. (2009) For ant-protected plants, the best defense is a hungry offense. Ecology, 90: 2823-2831. doi: 10.1890/08-1580.1

Nobel, P. S. (1982). Low-temperature tolerance and cold hardening of cacti. Ecology 63: 1650-1656.

Nobel, P.S., & De la Barrera, E. 2003. Tolerances and acclimation to low and high temperatures for cladodes, fruits and roots of a widely cultivated cactus, Opuntia ficus-indica. New Phytol., 157: 271-279.

O'Connor, M.I. (2009). Warming strengthens an herbivore-plant interaction. Ecology, 90: 388-398.

Oliver, T.H., Leather, S.R. & Cook, J.M. (2008) Macroevolutionary patterns in the origin of mutualisms involving ants. J. Evol. Biol., 21: 1597-1608. doi: 10.1111/j.1420-9101.2008.01600.x

Peck, L. S., Webb, K.E., & Bailey, D.M. (2004). Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct. Ecol., 18: 625-630.

Rico-Gray, V., & Oliveira, P.S. (2007). The ecology and evolution of ant–plant interactions. University of Chicago Press, Chicago, Illinois, USA.

Rudgers, J. A. (2004). Enemies of herbivores can shape plant traits: Selection in a facultative ant-plant mutualism. Ecology 85: 192-205. doi: 10.1890/02-0625

Sinclair, B. J., Vernon, P., Klok C.J., & Chown, S.L. (2003). Insects at low temperatures: an ecological perspective. Trends Ecol. Evol., 18: 257-262. doi: 10.1016/s0169-5347(03)00014-4

Trager, M. D., Bhotika, S., Hostetler, J.A., Andrade, G.V., Rodriguez-Cabal, M.A., McKeon, C.S., Osenberg, C.W., & Bolker, B.M. (2010). Benefits for Plants in Ant-Plant Protective Mutualisms: A Meta-Analysis. Plos One 5: 9. e14308 10.1371/journal.pone.0014308

Tylianakis, J.M., Didham, R.K., Bascompte, J. & Wardle, D.A. (2008) Global change and species interactions in terrestrial ecosystems. Ecol. Lett., 11: 1351-1363. doi: 10.1111/j.1461-0248.2008.01250.x



  • There are currently no refbacks.

JCR Impact Factor 2018: 0.604