No Morphometric Distinction between the Host Constrictotermes cyphergaster (Silvestri) (Isoptera: Termitidae, Nasutitermitinae) and its Obligatory Termitophile Corotoca melantho Schiødte (Coleoptera: Staphylinidae)

Hélida Ferreira da Cunha, Juliana Soares Lima, Ludmylla Ferreira de Souza, Luana Gabriela Alves dos Santos, João Carlos Nabout

Abstract


Different species may live in termite nests, cohabiting in close association with the host colony or occupying nest cavities without direct contact with the host. The strategy of termitophile organisms to become integrated into termite societies include appeasement through chemical, morphological and/or behavioral mimicry. We investigated the hypothesis that there is a morphological mimicry between the obligate termitophile Corotoca melantho (Coleoptera: Staphylinidae) and workers of its termite host Constrictotermes cyphergaster (Isoptera: Termitidae). Pictures of thirty-one C. cyphergaster workers and C. melantho individuals were taken in top and side views and converted into thin-plate splines. Four homologous landmarks and five semilandmarks (reference points) were marked on the head and abdomen of both species and digitized. The body shape of both species are morphometrically similar, so there is no discrimination between specimens of termitophile beetles and worker of termite hosts. Body size of termite hosts is responsible for 20% to 30% of body shape variation, while the body size of termitophiles beetle affects near 50% to 60% body shape. However, termitophiles body shape had a greater variation than worker termites. This is the first study to compare morphological similarity among termites and termitophiles using morphometric geometry. Our results indicated the existence of a morphological mimicry between C. cyphergaster and C. melantho.


Keywords


coexistence, morphological mimicry, termite, termitophile

Full Text:

PDF

References


Costa. C. & Vanin, S.A. (2010). Coleoptera Larval Fauna Associated with Termite Nests (Isoptera) with Emphasis on the Bioluminescent Termite Nests” from Central Brazil. Psyche 12 pages, doi:10.1155/2010/723947.

Costa, D.A., Carvalho, R.A., Lima-Filho, G.F. & Brandão D. (2009). Inquilines and Invertebrate Fauna Associated with Termite Nests of Cornitermes cumulans (Isoptera, Termitidae) in the Emas National Park, Mineiros, Goiás, Brazil. Sociobiology 53 (2B): 443-453.

Costa-Lima, A. (1952). Insetos do Brasil, Coleoptera, Rio de Janeiro: Escola Nacional de Agronomia. 313-323 p.

Cristaldo, P.F., Rosa, C.S., Florencio, D.F., Marins, A. & DeSouza, O. (2012). Termitarium volume as a determinant of invasion by obligatory termitophiles and inquilines in the nests of Constrictotermes cyphergaster (Termitidae, Nasutitermitinae). Insect. Soc. doi 10.1007/s00040-012-0249-3.

Cunha, H.F. & Morais, P.P.A.M. (2010). Relação Espécie-Área em Cupinzeiros de Pastagem, Goiânia-GO, Brasil. EntomoBrasilis, 3 (3): 60-63. doi: 10.12741.

Cunha, H.F. & Brandão, D. (2000). Invertebrates associated with the Neotropical termite Constrictotermes cyphergaster (Isoptera: Termitidae, Nasutitermitinae). Sociobiology 37 (3): 593-599.

Doornik, J. A. & Hansen, H. (1994). An omnibus test for univariate and multivariate normality. working paper, Nuffield College, Oxford. Grassé, P. (1986). Termitologia, vol. III. Masson, Paris - New York.

Howard, R.W. & Blomquist, G. (2005). Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Ann Rev Entomol 50: 371-393. doi:10.1146/annurev.ento.50.071803.130359.

Howard, R.W., McDaniel, D.C.A., Nelson, G.R., Blomquist, L.J., Gelbau, M.T. & Zalkow, L.H. (1982). Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species- and caste-recognition cues. J Chem Ecol 8 (9): 1227- 1239. doi 10.1007/BF00990755.

Jacobson, H.R. & Pasteels, J.M. (1985). A new termitophilous species of Termitoptocinus Silvestri from New Guinea and a redescription of the genus (Coleoptera, Staphylinidae, Aleocharinae, Corotocini). Indo-Malay. Zool. 2: 319-323.

Kistner, D.H. (1968). Revision of the African species of the termitophilous tribe Corotocini (Coleoptera: Staphylinidae). 1. A new genus and species from Ovamboland and its zoogeographic significance. J N Y Entomol Soc 76: 213-221.

Kistner, D.H. (1969). The biology of termitophilous. In: K.

Krishna & F.M. Weesner (Eds.), Biology of termites. Vol. I. New York, Academic Press. p. 525-557.

Kistner, D.H. (1970). Australian termitophilous associated with Microcerotermes (Isoptera: Amitermitinae). Pacific Insects 12 (1): 9-15.

Kistner, D.H. (1979). Social and evolutionary significance of social insect symbionts. In: H.R. Hermann (Eds.), Social Insects Vol. 1 Academic Press, New York, San Francisco, and London. p. 339-413.

Kistner, D.H. (1982). The social insects’ bestiary In: H.R. Herman (Ed.) pp. 1-244.

Kistner, D.H. (1990). The integration of foreign insects into termite societies or why do

termites tolerate foreign insects in their societies. Sociobiology 17: 191–215.

Krikken, J. (2008). Two new species from Kenya in the physogastric termitophilous genus Termitoderus Mateu 1966 (Coleoptera Scarabaeidae Aphodiinae). Tropical Zoology 21: 153-162.

Liebherr, J.K. & Kavanaugh, D.H. (1985). Ovoviviparity in carabid beetles of the genus Pseudomorpha (Insecta: Coleoptera). J Natural Hist 19: 1079-1086. doi: 10.1080/00222938500770681.

Legendre, P. & Legendre. L. (2004). Numerical Ecology. 3rd ed. Amsterdan: Elsevier Science.

Lopes, S.M. & Oliveira, E.H. (2005). Espécie nova de Ischnoptera Burmeister, 1838 (Blattaria: Blattellidae: Blattellinae) do estado de Goiás, Brasil, coletada em ninho de cupim. Biota Neotrop 5 (1): 71-74. doi.org/10.1590/S1676-06032005000100008.

Mathews, A.G.A. (1977). Studies on termites from the Mato Grosso State, Brazil. Rio de Janeiro: Academia Brasileira de Ciências 267 p.

Monteiro, L.R. & Reis, S.F. (1999). Princípios de morfometria geométrica. São Paulo: Holos 188p.

Moraes, D.A. (2003). A morfometria geométrica e a “revolução na morfometria”: localizando mudanças na forma dos organismos. http://www.bioletim.hpg.ig.com.br/III-3/artigos/moraes.htm

Noirot, C. & Darlington, J.P.E.C. (2000). Termite nests: architecture, regulation and defense, In: T. Abe, D.E. Bignell & M. Higashi (Eds.), Termites: Evolution, Sociality, Symbioses, Ecology. Netherlands: Kluwer Academic Publishers. p. 121-139.

Pasteels, J.M. (1968). Les aleocharine des genres Termitopullus (Coleoptera) Catalina (Termitonannini, Perinthina), Termitusa (Termitohospitini, Termitusina). Insec Soc 16: 1-26.

Pasteels, J.M. & Kistner, D.H. (1971). Revision of the termitophilous subfamily Trichopseniinae (Coleoptera: Staphylinidae). II. The remainder of the genera with a representational study of the gland systems and a discussion of their relationships. Misc Publ Entomol Soc Am 7 (4): 351–399.

Rohlf, F.J. (2008). TPS Dig versão 2.12. Stony Brook, Departament of Ecology and Evolution, State University of New York. Available online at: http://life.bio.sunysb.edu/morph Accesed 30.V.2009.

Rohlf, F.J. (2008). TPS Relw versão 1.46. Stony Brook, Departament of Ecology and Evolution, State University of New York. Available online at: http://life.bio.sunysb.edu/morph Accesed 30.V.2009.

Rohlf, F.J. (2009). TPS Regr versão 1.37. Stony Brook, Departament of Ecology and Evolution, State University of New York. Available online at: http://life.bio.sunysb.edu/morph Accesed 30.V.2009.

Rohlf, F.J. (2009). TPSUtil versão 1.44. Stony Brook, Departament of Ecology and Evolution, State University of New York. Available online at: http://life.bio.sunysb.edu/morph Accesed 30.V.2009.

Rosa, C.S. (2008). Interações entre cupins (Insecta, Isoptera) e termitófilos. Dissertação, Universidade Federal de Viçosa.

Seevers, C.H. (1957). A monograph on the termitophilous Staphylinidae (Coleoptera). Fieldiana Zool. 40: 1-334.

Setz, E.Z.F., Enzweiler, J., Solferini, V.N., Amêndo, M.P., & Berton, R.S. (1999). Geophagy in the golden-faced saki monkey (Pithecia pithecia chrysocephala) in the Central Amazon. J Zool 247 (1): 91-103. doi: 10.1111/j.1469-7998.1999.tb00196.x.

Sillam-Dussès, D., Sémon, E., Robert, A., Cancello, E.M., Lenz, M., Valterová, I., & Bordereau, C. (2010). Identification of multi-component trail pheromones in the most evolutionarily derived termites, the Nasutitermitinae (Termitidae). Biological Journal of the Linnean Society 99: 20–27. doi: 10.1111/j.1095-8312.2009.01348.x.

Souto, L. & Kitayama, K. (2000). Constrictotermes cyphergaster (Isoptera: Termitidae: Nasutitermitinae) maintain foraging trails for a longer period by means of fecal droplets. Sociobiology 35:367–372.

Waldemar, C.C. & Irgang, B.E. (2003). A ocorrência do mutualismo facultativo entre Dyckia maritina Backer (Bromeliaceae) e o cupim Cortaritermes silvestrii (Holmgren), Nasutitermitinae, em afloramentos rochosos no Parque Estadual de Itapuã, Viamão, RS. Acta Bot Bras 17 (1): 37-48. doi.org/10.1590/S0102-33062003000100004.

Wilson, E.O. (1971). The Insect Societies. The Belknap Press of Harvard University Press, Cambridge, Mass. 548 p.

Zelditch, M.L., Swiderski, D.L., & Sheets, H.D. (2012). Geometrics Morphometrics for Biologists: a primer. Academic Press of Elsevier, 2nd. Edition.




DOI: http://dx.doi.org/10.13102/sociobiology.v62i1.65-69

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2016: 0.699