Herbicide application on Genetically Modified Maize influences bee visitation

Higor de Castro Monteiro, Michael Willian Rocha de Souza, Letícia Alves Carvalho Reis, Evander Alves Ferreira, Veríssimo Gibran Mendes de Sá, Marcus Alvarenga Soares


Brazil is one of the world’s largest producers of maize (Zea mays L.). Cry proteins derived from the bacterium Bacillus thuringiensis (Bt) have been widely used in transgenic maize due to their toxicity and specificity against insects that damage crops. In addition, these plants have been stacked with different herbicide tolerance genes. Non-target insects end up being exposed to Bt proteins and herbicide applications. There is little information on the effects of Bt transgenics and their cultural practices on the behavior of pollinators in genetically modified crops. The aim of this research was to verify the impact of genotypes of genetically modified maize, Herculex®, PowerCore®, and the conventional isohybrid, pulverized or not with herbicides (atrazine, glufosinate-ammonium and nicosulfuron) in bee populations. In order to evaluate the presence of insects, a zig-zag tour was carried out throughout the experimental field, ascertained from visual analysis and direct counting of six plants per plot (the dimensions of the plots were 2.5 x 10 m with five maize lines spaced 0.50 m between rows and 0.36 m between plants) randomly, 18 days after spraying herbicides in the area. Apis mellifera (L.) (Hymenoptera: Apidae), Tetragonisca angustula (L.) (Hymenoptera: Apidae) and Trigona spinipes (F.) (Hymenoptera: Apidae) were the pollinator species identified in the crop. It was observed that the incidence of pollinator insects varied according to cultivars and herbicides tested; however, the PowerCore® genotype experienced more visitation of pollinating bees independently of the herbicide treatments. 


Zea mays, Transgenic, Pollinating Insects

Full Text:



Bohnenblust, E.W., Vaudo, A.D., Egan, J. F., Mortensen, D.A., Tooker, J.F. (2016). Effects of the herbicide dicamba on nontarget plants and pollinator visitation. Environmental Toxicology and Chemistry, 35: 144-51. doi: 10.1002/etc.3169

Brizola-Bonacina, A.K., Arruda, V.M., Alves, V.V., Chaud-Netto, J., Polatto, L.P. (2012). Bee visitors of quaresmeira flowers (Tibouchina granulosa Cogn.) in the region of Dourados (MS-Brasil). Sociobiology, 59: 1253-1267. doi: 10.13102/sociobiology.v59i4.503

Chambó, E.D., Garcia, R.C., Oliveira, N.T.E., Duarte-Júnior, J.B. (2010). Application of insecticide and its impact on the visitation of bees (Apis mellifera L.) in sunflower (Helianthus annuus L.). Revista Brasileira de Agroecologia, 5: 37-42.

CONAB - Companhia Nacional De Abastecimento. (2016). Safra de grãos, first survey. http://www.conab.gov.br. (accessed date: 10 October, 2016).

Constantin, J., Oliveira, R.S., Cavalieri, S.D., Arantes, J.G.Z., Alonso, D.G., Roso, A. C., Costa, J.M. (2010). Interaction between burndown systems and post-emergence weed control affecting corn development and yield. Planta Daninha, 25: 513-520. doi: 10.1590/S0100-83582007000300010

Damascena, J.G., Leite G.L.D., Silva, F.W.S., Soares, M.A., Guanabens, R.E.M., Sampaio, R.A., Zanuncio, J.C. (2017). Spatial distribution of phytophagus insect, natural enemies, and pollinators on Leucaena leucocephala (Fabaceae) trees in the Cerrado. Florida Entomologist, 100: 558-565. doi: 10.1653/024.100.0311

Ferreira, D.F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 382: 109-112. doi: 10.1590/S1413-70542014000200001

Grabowski, M., Dabrowski, Z.T. (2012). Evaluation of the impact of the toxic protein Cry1Ab expressed by the genetically modified cultivar MON810 on honey bee (Apis mellifera L.) behavior. Medycyna Weterynaryjna, 68: 630-633.

Pires, C.S.S., Silveira, F.A., Cardoso, C.F., Sujii, E.R., Paula, D.P., Fontes, E.M.G., Silva, J.P., Rodrigues, S.M.M., Andow, D.A. (2014). Selection of bee species for environmental risk assessment of GM cotton in the Brazilian Cerrado. Pesquisa Agropecuária Brasileira, 49: 573-586. doi: 10.1590/S0100-204x2014000800001

Resende, D.C., Mendes, S.M., Marucci, R.C., Silva, A.D., Campanha, M.M., Waquil, J.M. (2016). Does Bt maize cultivation affect the non-target insect community in the agro ecosystem? Revista Brasileira de Entomologia, 60: 82-93. doi: 10.1016/j.rbe.2015.12.001

Rosa, D.D., Basseto, M.A., Cavariani, C., Furtado, E.L. (2010). Effect of herbicides on phytopathogenic agentes. Acta Scientiarum-Agronomy, 32: 379-383. doi: 10.4025/actasciagron.v32i3.3728

Silva, A.A., Silva, J.F. (2007). Tópicos em manejo de plantas daninhas. Universidade Federal de Viçosa. Viçosa: Brasil. pp. 17-61.

Yuan, Y., Krogh, P.H., Bai, X., Roelofs, D., Chen, F., Zhu-Salzman, K., Liang, Y., Sun, Y., Ge, F. (2014). Microarray detection and qPCR screening of potential biomarkers of Folsomia candida (Collembola: Isotomidae) exposed to Bt proteins (Cry1Ab and Cry1Ac). Environmental Pollution, 184: 170–178. doi: 10.1016/j.envpol.2013.08.014

Zhao, Z., Li, Y., Xiao, Y., Ali, A., Dhiloo, K.H., Chen, W., Wu, K. (2016). Distribution and metabolism of Bt-Cry1Ac toxin in tissues and organs of the cotton bollworm, Helicoverpa armigera. Toxins, 8: 212. doi: 10.3390/toxins8070212

DOI: http://dx.doi.org/10.13102/sociobiology.v66i2.3390


  • There are currently no refbacks.

JCR Impact Factor 2018: 0.604