Coexistence Patterns Between Ants And Spiders In Grassland Habitats

András Márton Rákóczi, Ferenc Samu

Abstract


The ecological importance of both ants and spiders is well known, as well as the relationship between certain spiders and ants. The two main strategies ˗ myrmecomorphy (ant-mimicking) and myrmecophagy (ant-eating) ˗ that connect spiders to ants have been mostly studied at the behavioural level. However, less is known about how these relationships manifest at the ecological level by shaping the distribution of populations and assemblages. Our question was how ant-mimicking and ant-eating spiders associate with ant genera as revealed by field co-occurrence patterns. For both spider groups we examined strength and specificity of the association, and how it is affected by ant size and defence strategy. To study spider-ant association patterns we carried out pitfall sampling on the dolomitic Sas Hill located in Budapest, Hungary. Spiders and ants were collected at eight grassland locations by operating five pitfalls/location continuously for two years. To find co-occurrence patterns, two approaches were used: correlation analyses to uncover possible spider-ant pairs, and null-model analyses (C-score) to show negative associations. These alternative statistical methods revealed consistent co-occurrence patterns. Associations were generally broad, not specific to exact ant genera. Ant-eating spiders showed a stronger association with ants. Both ant-mimicking and ant-eating spiders associated more strongly with Formicine ants - species with formic acid or anal gland secretions, and had neutral association with Myrmicine ants - species with stings and cuticle defences.

Keywords


Sas Hill; species co-occurrence; correlation; mimicry; myrmecomorphy; myrmecophagy

Full Text:

PDF

References


Balogh, J. I. (1935). A Sashegy Pókfaunája. Faunisztikai, Rendszertani és Környezettani Tanulmány [Spider fauna of the Sas-hegy. A faunistical, taxonomical and environmental study]. Budapest: Sárkány-Nyomda Rt., 60 p

Bettini, S., S. Blum & H. R. Hermann, Jr. (1978). Venoms and Venom Apparatuses of the Formicidae: Dolichoderinae and Aneuretinae. In Arthropod Venoms. (pp. 871-894), Springer Berlin Heidelberg.

Blum, M. S. (1992). Ant Venoms: Chemical and Pharmacological Properties. Toxin Reviews, 11: 115-164.

Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71: 1-370.

Cardenas, M., P. Jiros & S. Pekar. (2012). Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften, 99: 597-605. doi: 10.1007/s00114-012-0938-9

Ceccarelli, F. S. (2008). Behavioral mimicry in Myrmarachne species (Araneae, Salticidae) from North Queensland, Australia. Journal of Arachnology, 36: 344-351. doi: 10.1636/CSt07-114.1

Csősz, S., B. Markó & L. Gallé. (2011). The myrmecofauna (Hymenoptera: Formicidae) of Hungary: an updated checklist. North-Western Journal of Zoology, 7: 55.

Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: A review. Florida Entomologist, 80: 165-193. doi: 10.2307/3495552

Cushing, P. E. (2012). Spider-Ant Associations: An Updated Review of Myrmecomorphy, Myrmecophily, and Myrmecophagy in Spiders. Psyche, 2012: 23. doi: 10.1155/2012/151989

Czechowski, W., A. Radchenko, W. Czechowska & K. Vepsäläinen. (2012). The ants of Poland with reference to the myrmecofauna of Europe. Fauna Poloniae 4. Warsaw: Natura Optima Dux Foundation, 496 p

Edmunds, M. (1978). On the association between Myrmurachne spp. (Salticidae) and ants. Bulletin of the British Arachnological Society, 4: 149-160.

Edwards, G. B., J. F. Carroll & W. H. Whitcomb. (1974). Stoidis aurata (Araneae: Salticidae), a Spider Predator of Ants. 57: 337-346.

Feener, D. J. (2000). Is the assembly of ant communities mediated by parasitoids? Oikos, 90: 79-88.

Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology, 81: 2606-2621. doi: 10.1890/0012-9658(2000)081[2606:Nmaosc]2.0.Co;2

Gotelli, N. J. & G. L. Entsminger. (2010). EcoSim: Null models software for ecology. Version 7.

http://garyentsminger.com/ecosim.htm. Jericho, VT 05465: Acquired Intelligence Inc. & Kesey-Bear.

Hermann, H. R. (1969). The hymenopterous poison apparatus: Evolutionary trends in three closely related subfamilies of ants. (Hymenoptera: Formicidae). Journal of the Georgia Entomological Society, 4:

Hölldobler, B. & E. O. Wilson. (1990). The Ants. Belknap Press of Harvard University Press

Holway, D. A. (1999). Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology, 80: 238-251.

Kádár, F. & F. Samu. (2006). A duplaedényes talajcsapdák használata Magyarországon [On the use of duble-cup pitfalls in Hungary]. Növényvédelem, 42: 305-312.

Loksa, I. (1969). Pókok I. - Araneae I. In Magyarország Állatvilága (Fauna Hungariae). (pp. 133), Budapest: Akadémiai Kiadó.

Loksa, I. (1972). Pókok II. - Araneae II. In Magyarország Állatvilága (Fauna Hungariae). (pp. 112), Budapest: Akadémiai Kiadó.

McIver, D. J. & G. Stonedahl. (1993). Myrmecomorphy: Morphological and behavioral mimicry of ants. Annual Review of Entomology, 38: 351-379.

Nelson, X. J. & R. R. Jackson. (2009). Collective Batesian mimicry of ant groups by aggregating spiders. Animal Behaviour, 78: 123-129. doi: 10.1016/j.anbehav.2009.04.005

Nelson, X. J. & R. R. Jackson. (2012). How spiders practice aggressive and Batesian mimicry. Current Zoology, 58: 620-629.

Nentwig, W., T. Blick, D. Gloor, A. Hänggi & C. Kropf. (2013). Spiders of Europe www.araneae.unibe.ch version 2.2013.

Pekar, S. (2004a). Poor display repertoire, tolerance and kleptobiosis: Results of specialization in an ant-eating spider (Araneae, Zodariidae). Journal of Insect Behavior, 17: 555-568. doi: 10.1023/B:Joir.0000042541.23748.D7

Pekar, S. (2004b). Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). Journal of Arachnology, 32: 31-41. doi: 10.1636/S02-15

Pekár, S. (2004). Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). Journal of Arachnology, 32: 31-41.

Pekar, S., J. A. Coddington & T. A. Blackledge. (2012). Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution, 66: 776-806. doi: 10.1111/j.1558-5646.2011.01471.x

Pekar, S. & M. Jarab. (2011). Assessment of color and behavioral resemblance to models by inaccurate myrmecomorphic spiders (Araneae). Invertebrate Biology, 130: 83-90. doi: 10.1111/j.1744-7410.2010.00217.x

Pekár, S., D. Mayntz, T. Ribeiro & M. E. Herberstein. (2010). Specialist ant-eating spiders selectively feed on different body parts to balance nutrient intake. 79: 1301-1306.

Platnick, N. I. (2010). The World Spider Catalog, Version 11.0 http://research.amnh.org/entomology/spiders/catalog/. New York: The American Museum of Natural History

Platnick, N. I. (2013). The World Spider Catalog, Version 13.5 http://research.amnh.org/entomology/spiders/catalog/. New York: The American Museum of Natural History

R Core Team. (2013). R: A language and environment for statistical computing. http://www.R-project.org/. Vienna, Austria: R Foundation for Statistical Computing.

Rákóczi, A. M. & F. Samu. (2012). Természetvédelmi célú orgonairtás rövidtávú hatása pókegyüttesekre [The short term effect of Syringa eradication conservation management on spider assemblages]. Rosalia, 8: 141-149.

Reiskind, J. (1977). Ant-mimicry in panamanian clubionid and salticid spiders (Araneae - Cubionidae, Salticidae). Biotropica, 9: 1-8. doi: 10.2307/2387854

Renault, C. K., L. M. Buffa & M. A. Delfino. (2005). An aphid-ant interaction: effects on different trophic levels. Ecological Research, 20: 71-74. doi: 10.1007/s11284-004-0015-8

Roberts, M. J. (1995). Spiders of Britain and Northern Europe. London: HarperCollins

Samu, F. & C. Szinetár. (2000). Rare species indicate ecological integrity: an example of an urban nature reserve island. In (P. Crabbé, A. Holland, L. Ryszkowski & L. Westra, Eds.), Implementing ecological integrity. (pp. 177-184), Dordrecht: Kluwer Academic Publishers.

Sanders, D. & F. J. F. van Veen. (2012). Indirect commensalism promotes persistence of secondary consumer species. Biology Letters, 8: 960-963. doi: 10.1098/rsbl.2012.0572

Schowalter, T. D. (2006). Insect Ecology: An Ecosystem Approach. Elsevier Science

Shattuck, S. O. (1992). Higher classification of the ant subfamilies Aneuretinae, Dolichoderinae and Formicinae (Hymenoptera: Formicidae). Systematic Entomology, 17: 199-206.

Somfai, E. (1959). Hangya alkatúak Formicoidea. In Magyarország Állatvilága (Fauna Hungariae). (pp. 79), Budapest: Akadémiai Kiadó.

Stone, L. & A. Roberts. (1990). The checkerboard score and species distributions. Oecologia, 85: 74-79. doi: Doi 10.1007/Bf00317345

Szinetár, C., A. M. Rákóczi, K. Bleicher, E. Botos, P. Kovács & F. Samu. (2012). A Sas-hegy pókfaunája II. A Sas-hegy faunakutatásának 80 éve a hegyről kimutatott pókfajok kommentált listája [Spider fauna of Mt Sas-hegy II. 80 years of fauna research on Mt Sas-hegy, with the annotated list of spiders]. Rosalia, 8: 333-362.

Wilson, E. O. (1976). Organization of colony defense in ant Pheidole dentata Mayr (Hymenoptera-Formicidae). Behavioral Ecology and Sociobiology, 1: 63-81. doi: 10.1007/bf00299953

Yanoviak, S. P. & M. Kaspari. (2000). Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos, 89: 259-266. doi: 10.1034/j.1600-0706.2000.890206.x




DOI: http://dx.doi.org/10.13102/sociobiology.v61i2.171-177

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.604