Effects of Fipronil on Non-target Ants and Other Invertebrates in a Program for Eradication of the Argentine Ant, Linepithema humile

Yoshiko Sakamoto, Takehiko I. Hayashi, Maki N. Inoue, Hitoshi Ohnishi, Toshio Kishimoto, Koichi Goka


Pesticides are frequently used to eradicate invasive ant species, but pose ecological harm. Previous studies assessed non-target effects only in terms of the increase or decrease of abundance or species richness after pesticide applications. Positive effects of the release from pressure caused by invasive ant species have not been considered so far. To more accurately assess pesticide effects in the field, the non-target effects of pesticides should be considered separately from the positive effects of such releases. Here, we used monitoring data of ants and other invertebrates collected in a program for the eradication of the Argentine ant, Linepithema humile (Mayr), using fipronil. First, we separately assessed the effects of L. humile abundance and fipronil exposure on non-target ants and other invertebrates using generalized linear models. The abundance of L. humile and the number of pesticide treatments were negatively associated with the total number of non-target individuals and taxonomic richness. We also noted negative relationships between the number of individuals of some ant species and other invertebrate taxonomic groups. The L. humile × pesticide interaction was significant, suggesting that the abundance of L. humile affected the level of impact of pesticide treatment on non-target fauna. Second, we evaluated the dynamics of non-target ant communities for 3 years using principal response curve analyses. Non-target ant communities treated with fipronil continuously for 3 years recovered little, whereas those treated for 1 year recovered to the level of the untreated and non-invaded environment.


invasive alien species; pesticide impact; total number of individuals; species richness; community structure

Full Text:



Abedrabbo, S. (1994). Control of the little fire ant, Wasmannia auropunctata, on Santa Fe Island in the Galapagos islands. In: D.F. Williams (Ed), Exotic Ants: biology, impact, and control of introduced species (pp. 219-227). Boulder, Colorado: Westview Press.

Buczkowski, G. (2017). Prey-baiting as a conservation tool: selective control of invasive ants with minimal non-target effects. Insect Conservation and Diversity, 10: 302-309. doi: 10.1111/icad.12230

Buczkowski, G., Bennett, G.W. (2008). Detrimental effects of highly efficient interference competition: Invasive argentine ants outcompete native ants at toxic baits. Environmental Entomology, 37: 741-747. doi: 10.1603/0046-225x(2008)37[741:deohei]2.0.co;2

Campbell, K.J., Beek, J., Eason, C.T., Glen, A.S., Godwin, J., Gould, F., Holmes, N.D., Howald, G.R., Madden, F.M., Ponder, J.B., Threadgill, D.W., Wegmann, A.S., Baxter, G.S. (2015). The next generation of rodent eradications: Innovative technologies and tools to improve species specificity and increase their feasibility on islands. Biological Conservation, 185: 47-58. doi: 10.1016/j.biocon.2014.10.016

Causton, C.E., Sevilla, C.R., Porter, S.D. (2005). Eradication of the little fire ant, Wasmannia auropunctata (Hymenoptera : Formicidae), from Marchena Island, Galapagos: On the edge of success? Florida Entomologist, 88: 159-168. doi: 10.1653/0015-4040(2005)088[0159:Eotlfa]2.0.Co;2

Clavero, M., Garcia-Berthou, E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology & Evolution, 20: 110. doi: 10.1016/j.tree.2005.01.003

Cole, F.R., Medeiros, A.C., Loope, L.L., Zuehlke, W.W. (1992). Effects of the Argentine ant on arthropod fauna of hawaiian high-elevation shrubland. Ecology, 73: 1313-1322. doi: 10.2307/1940678

Dreistadt, S.H., Hagen, K.S., Dahlsten, D.L. (1986). Predation by Iridomyrmex humilis (Hym., Formicidae) on eggs of Chrysoperla carnea (Neu., Chrysopidae) released for inundative control of Illinoia liriodendri (Hom., Aphididae) infesting Liriodendron tulipifera. Entomophaga, 31: 397-400. doi: 10.1007/bf02373157

Gould, F. (2008). Broadening the application of evolutionarily based genetic pest management. Evolution, 62: 500-510

Heller, N.E. (2004). Colony structure in introduced and native populations of the invasive Argenine ant, Linepithema humile. Insectes Sociaux, 51: 378-386. doi: 10.1007/s00040-004-0770-0

Hoffmann, B.D. (2010). Ecological restoration following the local eradication of an invasive ant in northern Australia. Biological Invasions, 12: 959-969. doi: 10.1007/s10530-009-9516-2

Hoffmann, B.D., Luque, G.M., Bellard, C., Holmes, N.D., Donlan, C.J. (2016). Improving invasive ant eradication as a conservation tool: A review. Biological Conservation, 198: 37-49. doi: 10.1016/j.biocon.2016.03.036

Hoffmann, B.D., O'Connor, S. (2004). Eradication of two exotic ants from Kakadu National Park. Ecological Management & Restoration, 5: 98-105

Holway, D.A. (1998). Effect of Argentina ant invasions on ground-dwelling arthropods in northern California riparian woodlands. Oecologia, 116: 252-258. doi: 10.1007/s004420050586

Holway, D.A. (1999). Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology, 80: 238-251

Holway, D.A., Lach, L., Suarez, A.V., Tsutsui, N.D., Case, T.J. (2002). The causes and consequences of ant invasions. Annual Review of Ecology and Systematics, 33: 181-233. doi: 10.1146/annurev.ecolsys.33.010802.150444

Hornung, E., Tóthmérész, B., Magura, T., Vilisics, F. (2007). Changes of isopod assemblages along an urban-suburban-rural gradient in Hungary. European Journal of Soil Biology, 43: 158-165. doi: 10.1016/j.ejsobi.2007.01.001

Human, K.G., Gordon, D.M. (1996). Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia, 105: 405-412. doi: Doi 10.1007/Bf00328744

Human, K.G., Gordon, D.M. (1997). Effects of Argentine ants on invertebrate biodiversity in northern California. Conservation Biology, 11: 1242-1248. doi: 10.1046/j.1523-1739.1997.96264.x

Inoue, M.N., Saito-Morooka, F., Suzuki, K., Nomura, T., Hayasaka, D., Kishimoto, T., Sugimaru, K., Sugiyama, T., Goka, K. (2015). Ecological impacts on native ant and ground-dwelling animal communities through Argentine ant (Linepithema humile) (Hymenoptera: Formicidae) management in Japan. Applied Entomology and Zoology, 50: 331-339. doi: 10.1007/s13355-015-0338-7

IUCN ISSG (2013). International Union for the Conservation of Nature Invasive Species Specialist Group: 100 of the world’s worst alien invasive species. http://www.issg.org/database/species/search.asp?st=100ss.

Jackman, S. (2017). pscl: Classes and methods for R developed in the political science computational laboratory, Stanford University. Stanford, California: Department of Political Science, Stanford University.

Klotz, J.H., Rust, M.K., Greenberg, L., Field, H.C., Kupfer, K. (2007). An evaluation of several urban pest management strategies to control Argentine ants (Hymenoptera: Formicidae). Sociobiology, 50: 391-398

Lepš, J., Šmilauer, P. (2003). Multivariate Analysis of Ecological Data using Canoco. Cambridge, UK: Cambridge University Press.

Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M., Bazzaz, F.A. (2000). Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10: 689-710. doi: 10.2307/2641039

McCullagh, P., Nelder, J.A. (1989). Generalized linear models, second edition. Abingdon, UK: Taylor & Francis.

McGlynn, T.P. (1999). The worldwide transfer of ants: geographical distribution and ecological invasions. Journal of Biogeography, 26: 535-548. doi: 10.1046/j.1365-2699.1999.00310.x

Miyake, K., Kameyama, T., Sugiyama, T., Ito, F. (2002). Effect of Argentine ant invasions on Japanese ant fauna in Hiroshima Prefecture, western Japan: A preliminary report (Hymenoptera : Formicidae). Sociobiology, 39: 465-474

National Institute of Environmental Studies (2014). Invasive species of Japan http://www.nies.go.jp/biodiversity/invasive/DB/detail/60090e.html.

Oksanen, J. (2013). Multivariate analysis of ecological communities in R: vegan tutorial.

Oliveras, J., Bas, J.M., Casellas, D., Gomez, C. (2005). Numerical dominance of the Argentine ant vs native ants and consequences on soil resource searching in Mediterranean cork-oak forests (Hymenoptera : Formicidae). Sociobiology, 45: 643-658

Park, S.H., Hosoishi, S., Ogata, K. (2014). Long-term impacts of Argentine ant invasion of urban parks in Hiroshima, Japan. Journal of Ecology and Environment, 37: 123-129

Passera, L. (1994). Characteristics of tramp species. In: D.F. Williams (Ed), Exotic Ants: biology, impact, and control of introduced species (pp. 23-43). Boulder, Colorado: Westview Press.

Pisa, L.W., Amaral-Rogers, V., Belzunces, L.P., Bonmatin, J.M., Downs, C.A., Goulson, D., Kreutzweiser, D.P., Krupke, C., Liess, M., McField, M., Morrissey, C.A., Noome, D.A., Settele, J., Simon-Delso, N., Stark, J.D., Van der Sluijs, J.P., Van Dyck, H., Wiemers, M. (2015). Effects of neonicotinoids and fipronil on non-target invertebrates. Environmental Science and Pollution Research, 22: 68-102. doi: 10.1007/s11356-014-3471-x

Plentovich, S., Hebshi, A., Conant, S. (2009). Detrimental effects of two widespread invasive ant species on weight and survival of colonial nesting seabirds in the Hawaiian Islands. Biological Invasions, 11: 289-298. doi: 10.1007/s10530-008-9233-2

Plentovich, S., Swenson, C., Reimer, N., Richardson, M., Garon, N. (2010). The effects of hydramethylnon on the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae), and non-target arthropods on Spit Island, Midway Atoll, Hawaii. Journal of Insect Conservation, 14: 459-465. doi: 10.1007/s10841-010-9274-6

Prasifka, J.R., Hellmich, R.L., Dively, G.P., Lewis, L.C. (2005). Assessing the effects of pest management on nontarget arthropods: The influence of plot size and isolation. Environmental Entomology, 34: 1181-1192. doi: 10.1603/0046-225x(2005)034[1181:Ateopm]2.0.Co;2

R Development Core Team (2013). R: A language and environment for statistical computing http://www.r-project.org/.

Rabitsch, W. (2011). The hitchhiker's guide to alien ant invasions. Biocontrol, 56: 551-572. doi: 10.1007/s10526-011-9370-x

Rhône Poulenc (1996). ‘Fipronil’ worldwide technical bulletin. Lyon, France: Agrochimie, 20 p.

Sakamoto, Y., Kumagai, N.H., Goka, K. (2017). Declaration of local chemical eradication of the Argentine ant: Bayesian estimation with a multinomial-mixture model. Scientific Reports, 7. doi: 10.1038/s41598-017-03516-z

Stanley, M.C., Ward, D.F. (2012). Impacts of Argentine ants on invertebrate communities with below-ground consequences. Biodiversity and Conservation, 21: 2653-2669. doi: 10.1007/s10531-012-0324-0 (in 295)

Suarez, A.V., Bolger, D.T., Case, T.J. (1998). Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology, 79: 2041-2056

Suarez, A.V., McGlynn, T.P., Tsutsui, N.D. (2010). Biogeographic and taxonomic patterns of introduced ants. In: L. Lach, C.L. Parr, and K.L. Abbott (Eds), Ant Ecology (pp. 233-244). Oxford: Oxford University Press

Sugiyama, T. (2000). Invasion of argentine ant, Linepithema humile, into Hiroshima Prefecture, Japan. Japanese Journal of Applied Entomology, 44: 127-129 (in Japanese)

Tschinkel, W.R., King, J.R. (2017). Ant community and habitat limit colony establishment by the fire ant, Solenopsis invicta. Functional Ecology, 31: 955-964. doi: 10.1111/1365-2435.12794

Vail, K.M., Bailey, D., McGinnis, M. (2003). Perimeter spray and bait combo. Pest Control Technology, 31: 96

Van den Brink, P.J., Ter Braak, C.J.F. (1999). Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environmental Toxicology and Chemistry, 18: 138-148. doi: 10.1897/1551-5028(1999)018<0138:prcaot>2.3.co;2

Walters, A.C., Mackay, D.A. (2003). The impact of the Argentine ant, Linepithema humile (Mayr) on native ants and other invertebrates in South Australia. Records of the South Australian Museum: 17-24

Williams, D.F. (1994). Exotic ants: biology, impact, and control of introduced species. Boulder, Colorado, USA: Westview Press.

DOI: http://dx.doi.org/10.13102/sociobiology.v66i2.3772


  • There are currently no refbacks.

JCR Impact Factor 2018: 0.604