The Odorant-Binding Protein Gene obp11 Shows Different Spatiotemporal Roles in the Olfactory System of Apis mellifera ligustica and Apis cerana cerana

Hongxia Zhao, Yuexiong Luo, Jianghong Lee, Xuefeng Zhang, qin Liang, Xinnian Zeng

Abstract


Odorant-binding proteins participate in the olfactory system of the honeybee. Apis mellifera ligustica and Apis cerana cerana are species of honeybee that have different biologic functions. The two species have diversified olfactory systems, with A. cerana displaying sensitive olfactory involvement in collecting nectar and pollen from small plants; and A. mellifera collecting from large nectariferous plants. We hypothesized that, given this difference in biologic activity, the gene obp11 of A. mellifera and A. cerana may show different olfactory expression patterns. We cloned and sequenced the obp11 genes from A. mellifera (Amobp11) and A. cerana (Acobp11). Using quantitative real-time PCR, we demonstrated that nurse workers, which have the highest olfactory sensitivity in the A. mellifera hive, have the highest expression of Amobp11; whereas 1-day-emerged  workers, which have lowest olfactory sensitivity, have correspondingly low expression. However, the highest expression of Acobp11 is observed for foragers, which display the highest olfactory sensitivity in the A. cerana population. The OBP11 protein from the two species is highly conserved, with an apparent molecular weight and predicted extracellular localization that is similar to other OBP proteins. The expression of the obp11 gene in A. mellifera and A. cerana correlates with the different roles of the olfactory system for the two different species. These findings support the critical role of odorant-binding proteins in the Apis olfactory system

Keywords


odorant-binding protein; olfactory;Apis

Full Text:

PDF

References


Beekman M., Fathke RL. & Seeley TD. (2006). How does an informed minority of scouts guide a honeybee swarm as it flies to its new home. An. Behav., 71: 161-171.

Ben-Shahar Y. (2005). The foraging gene, behavioral plasticity, and honeybee division of labor. J. Compar. Physiol. A, 191: 987-994.

Ben-Shahar Y., Robichon A., Sokolowski MB. & Robinson GE. (2002). Influence of gene action across different time scales on behavior. Science, 296: 741-744.

Calderone NW. (1998). Proximate mechanisms of age polyethism in the honey bee, Apis mellifera L. Apidologie, 29: 127-158.

Danty E., Michard-vanhee C., Huet JC., Genecque E., Pernollet JC. & Masson C. (1997). Biochemical characterization, molecular cloning and localization of a putative odorant-binding protein in the honey bee Apis mellifera L. (Hymenoptera: Apidea). FEBS Lett., 414: 595-598.

Forêt S. & Maleszka R. (2006). Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Gen. Res., 16: 1404-1413.

Francesca RD., Immacolata I. & Antonio F. (2010). Mapping the Expression of Soluble Olfactory Proteins in the Honeybee. J. Prot. Res., 9, 1822-1833.

Ferguson AW. & Free JB. (1980). Queen pheromone transfer within honeybee colonies. Physiol. Entomol., 5, 359-366.

Honeybee Genome Sequencing Consortium. (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931-949.

Johnson BR. (2003). Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. Roy. Soc. London. B Biol., 270: 147-152.

Johnson BR. (2008a). Global information sampling in the honey bee. Naturwissensch-aften, 95: 523-530.

Johnson BR. (2008b). Within-nest temporal polyethism in the honeybee. Behav. Ecol. Sociobiol., 62: 777-784.

Johnson BR. (2010). Division of labor in honeybees: form, function, and proximate mechanisms. Behav. Ecol. Sociobiol. 64: 305-316.

Le Conte Y, Mohammedi A. & Robinson GE. (2001). Primer effects of a brood pheromone on honeybee behavioural development. Proc. Roy. Soc. London. B Biol., 268: 163-168.

Le Conte Y. & Hefetz A. (2008). Primer Pheromones in Social Hymenoptera. Annu. Rev. Entomol., 53: 523-542.

Lee HL, Zhang YL, Gao QK, Cheng JA. & Lou BG. (2008). Molecular Identification of cDNA, Immunolocalization, and Expression of a Putative Odorant-Binding Protein from an Asian Honey Bee, Apis cerana cerana. J. Chem. Ecol., 34: 1593-1601.

Masson C. & Arnold G. (1984). Ontogeny, maturation, and plasticity of the olfactory system in the worker bee. J. Insect Physiol., 30: 7-14.

Maisonnasse A, Lenoir JC, Costagliola G, Beslay D. &Choteau F. (2009). A scientific note on E-β-ocimene, a new volatile primer pheromone that inhibits worker ovary development in honey bees. Apidologie, 40: 562-564.

Maisonnasse A, Lenoir JC, Beslay D, Crauser D. & Le Conte Y. (2010). E-β-ocimene, a Volatile Brood Pheromone Involved in Social Regulation in the Honey Bee Colony (Apis mellifera). PLoS ONE 5(10): e13531. doi: 10.1371/ journal. pone. 0013531.

Moritz RFA. & Crewe RM. 1991. The volatile emission of honeybee queens(Apis mellifera L). Apidologie, 22, 205-212.

Pankiw T. (2007). Brood pheromone modulation of pollen forager turnaround time in the honey bee (Apis mellifera L.). J. Insect Beh., 20: 173-180.

Peters L, Zhu-Salzman K. & Pankiw T. (2010) Effect of primer pheromones and pollen diet on the food producing glands of worker honey bees (Apis mellifera L.). J. Insect Physiol., 56: 132-137.

Petersen TN, Brunak S, Heijne GV. & Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8: 785-786.

Sarah E, Radloff F, Hepburn C, et al. (2010). Population structure and classification of Apis cerana. Apidologie, 41: 589-601.

Qin QH, He XJ, Zeng ZJ, et al. (2012). Comparison of learning and memory of Apis cerana and Apis mellifera. The Journal of Comparative Physiology,198: 777-786.

Slessor KN., Winston ML. & Le Conte Y. (2005). Pheromone communication in the honeybee (Apis mellifera L.). J. Chem. Ecol., 31: 2731-2745.

Sarah E, Radloff R, Colleen H, et al. (2010). Population structure and classification of Apis cerana. Apidologie, 41: 589-601.

Seeley TD. (1982). Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol., 11: 287-293.

Seeley TD. (1979). Queen substance dispersal by messenger workers in honeybee colonies. Behav. Ecol. Sociobiol., 5: 391-415.

Seeley TD. (1995). The wisdom of the hive. Harvard University Press, Cambridge.

Seeley TD. & Visscher PK. (2004). Quorum sensing during nest-site selection by honeybee swarms. Behav. Ecol. Sociobiol., 56: 594-601.

Vanesa M, Fernández, Andrés Arenas, Walter M. & Farina. (2009). Volatile exposure within the honeybee hive and its effect on olfactory discrimination. Compar. Physiol. A, 195: 759-768.

Visscher PK. (2007). Group decision making in nest-site selection among social insects. Annu. Rev. Entomol., 52: 255-275.

Winston ML. (1987). The biology of the honey bee. Harvard University Press, Cambridge.




DOI: http://dx.doi.org/10.13102/sociobiology.v60i4.429-435

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.604