Clonal composition of colonies of a eusocial aphid, Ceratovacuna japonica

Mitsuru Hattori

Abstract


High degrees of relatedness among colony mates and kin recognition ability are important factors maintaining eusociality. However, in eusocial aphids, clone mixing between different colonies is reported to occur frequently, suggesting a lack of kin recognition. Studies investigating the clonal composition of eusocial aphid colonies have focused on the aphid generation on the primary host plant (gall generation). To test whether clone mixing also occurs in open colonies of eusocial aphids on their secondary host plants (open-colony generation), we carried out an amplified fragment length polymorphism analysis to investigate clonal composition within colonies of the eusocial aphid Ceratovacuna japonica. The results showed that clone mixing occurred frequently in open-colony generation.


Keywords


amplified fragment length polymorphism, clone mixing, kin recognition, sociality

Full Text:

PDF

References


Abbot, P. (2009). On the evolution of dispersal and altruism in aphids. Evolution, 63: 2687–2696. doi: 10.1111/j.15558-5646.2009.00744.x

Abbot, P., Withgott, J. H. & Moran, N. A. (2001). Genetic conflict and conditional altruism in social aphid colonies. P. Natl. Acad. Sci. USA, 98: 12068–12071. doi: 10.1073/pnas.201212698

Aoki, S. & Kurosu, U. (1991). Discovery of the gall generation of Ceratovacuna japonica (Homoptera: Aphidoidea). Akitu, 122: 1–6.

Aoki, S. & Kurosu, U. (2010). A Review of the biology of Cerataphidini (Hemiptera, Aphididae, Hormaphidinae), focusing mainly on their life cycles, gall formation, and soldiers. Psyche, Retrieved from: http://dx.doi.org/10.1155/2010/380351

Aoki, S., Kurosu, U. and Stern, D. L. (1991) Aphid soldiers discriminate between soldiers and non-soldiers, rather than between kin and non-kin, in Ceratoglyphina bambusae. Anim. Behav. 42: 865–866.

Carlin, N. F., Gladstein, D. S., Berry, A. J. & Pierce, N. E. (1994). Absence of kin discrimination behavior in a soldierproducing aphid, Ceratovacuna japonica (Hemiptera: Pemphigidae; Cerataphidini). J. New York Entomol. S., 102: 287–298.

Dixon, A. F. G. (1998) Aphid ecology 2nd. Edition. Chapman & Hall: London. Gadagkar, R. (1985) Kin recognition in social insects and other animals – a review of recent findings and a consideration of their relevance for the theory of kin selection. Proc. Indian. Acad. Sci. (Anim. Sci.), 94: 587–621.

Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53: 325–338.

Hamilton, W. D. (1964). The genetical evolution of social behavior, I and II. J. Theor. Biol., 7: 1–52.

Hattori, M. & Itino, T. (2008). Soldiers’ armature changes seasonally and locally in an eusocial aphid (Homoptera: Aphididae). Sociobiology, 52: 429–436.

Hattori, M., Kishida, O. & Itino, T. (2013a). Buying time for colony mates: the anti-predatory function of soldiers in the eusocial aphid Ceratovacuna japonica (Homoptera, Hormaphidinae). Insect. Soc., 60: 15–21. doi: 10.1007/s00040-012-0258-2

Hattori, M., Kishida, O. & Itino, T. (2013b). Soldiers with large weapons in predator-abundant midsummer: phenotypic plasticity in a eusocial aphid. Evol. Ecol., 27: 847–862. doi: 10.1007/s10682-012-9628-5

Hölldobler, B. & Wilson, E. O. (1990) The ants. Belknap Press, Cambridge: Massachusetts.

Johnson, P. C. D., Whitfield, J. A., Foster, W. A. & Amos, W. (2002). Clonal mixing in the soldier-producing aphid Pemphigus spyrothecae (Hemiptera: Aphididae). Mol. Ecol., 11: 1525–1531.

Kutsukake, M., Shibao, H., Nikoh, N., Morioka, M., Tamura, T., Hoshino, T., Ohgiya, S. & Fukatsu, T. (2004). Venomous protease of aphid soldier for colony defense. P. Natl. Acad. Sci. USA, 101: 11338–11343.

Loxdale, H. D., Schöfl, G., Winesner, K. R., Nyabuga, F. N., Heckel, D. G. & Weisser, W. W. (2011) Stay at home aphids: comparative spatial and seasonal metapopulation structure and dynamics of two specialist tansy aphid species studied using microsatellite markers. Biol. J. Linn. Soc., 104: 838–865. doi: 10.5061/dryad.bs325

Pike, N. & Foster, W. A. (2004). Fortress repair in the social aphid species, Pemphigus spyrothecae. Anim. Behav., 67: 909–914.

Pike, N. & Foster, W. A. (2008). The ecology of altruism in a clonal insects. In Korb, J. & Heinze, J. (Eds.), Ecology of social evolution (pp. 37–56). Springer: Berlin.

R Developmental Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org.

Shibao, H. (1999). Lack of kin discrimination in the eusocial aphid Pseudoregma bambucicola (Homoptera: Aphididae). J. Ethol., 17: 17–24.

Stern, D. L. & Foster, W. A. (1996). The evolution of soldiers in aphids. Biol. Rev., 71: 27–79.

Sunnucks, P. & Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol., 13: 510–524.

Trivers, R. L. & Hare, H. (1976). Haploidploidy and the evolution of the social insects. Science, 191: 249–263.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T. V. D, Hornes, M., Friters, A, Pot, J., Paleman, J., Kuiper, M. & Zabeau, M. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res., 23: 4407–4414.

Wang, C. C., Tsaur S. C., Kurosu U., Aoki, S., & Lee, H. J. (2008). Social parasitism and behavioral interactions between two gall-forming social aphids. Insect. Soc., 55: 147–152.




DOI: http://dx.doi.org/10.13102/sociobiology.v62i1.116-119

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.604