Survival Rate, Food Consumption, and Tunneling of the Formosan Subterranean Termite (Isoptera: Rhinotermitidae) Feeding on Bt and non-Bt Maize

Bal Krishna Gautam

Abstract


Although several termite species were reported to be susceptible to some Bacillus thuringiensis (Bt) subspecies, no research has been conduced to evaluate the possible non-target effect of genetically modified (GM) Bt crops on termites. In this study, plant tissues of three commercial planted Bt maize (YieldGard* Corn Borer, Genuity* VT Triple PROTM and Genuity* SmartStaxTM) and two non-Bt maize hybrids were provided to Formosan subterranean termite, Coptotermes formosanus, as food. Five food sources including wood blocks and filter paper treated with maize leaf extract as well as leaves, stalks, and roots of maize were tested in the laboratory. The experiment was maintained for two weeks and the survival rate of termites, food consumption, and tunneling behavior were recorded. The results revealed no significant differences in survival rate, food consumption and length of tunnels between termites feeding on Bt and non-Bt maize planting materials, indicating that Bt proteins expressed in the three Bt maize products did not negatively affect C. formosanus. However, compared to wood block and filter paper treatments, termites feeding on maize tissues showed different consumption pattern and tunneling behavior. Our study also suggests that maize stalk is a good candidate for termite bait matrices.


Keywords


Coptotermes formosanus; GM Bt maize; non-target effect; consumption behavior; tunneling

Full Text:

PDF

References


Bravo, A., S. Likitvivatanavong, S. S. Gill, M. Soberón. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Molec. Biol. 41: 423-431.

Bulmer, M. S., and R. H. Crozier. 2004. Duplication and diversifying selection among termite antifungal peptides. Mol. Biol. Evol. 21: 2256-2264.

Castilhos-fortes, R., T. S. Matsumura, E. Diehl, and L. M. Fiuza. 2002. Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Braz. J. Microbiol. 33:219-222.

Chen, J., and G. Henderson. 1996. Determination of feeding preference of Formosan subterranean termite (Coptotermes formosanus Shiraki) for some amino acid additives. J. Chem. Ecol. 22: 2359-2369.

Chen, J., G. Henderson, C. C. Grimm, S. W. Lloyd, and R. A. Laine. 1998. Termites fumigate their nest with naphthalene. Nature 392: 558-559.

Chouvenc, T., and N.-Y. Su. 2012. When subterranean termites challenge the rules of fungal epizootics. PLoS ONE. 7: e34484.

Dai, Z.-R., and J.-Z. Luo. 1980. Preliminary observation on feeding of Formosan subterranean termites. Chin. Bull. Entomol. 17: 74-76 (in Chinese).

Das, N. R., and A. Chaudhary. 2011. Detection and quantification of Bt toxin in transgenic (Bt) cotton rhizospheric soil of northern India. Environ. Ecol. 29: 600-602.

Frankenhuyzen, K. V.. 2009. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 101: 1-16.

Gautam, B. K., and G. Henderson. 2011a. Effects of sand moisture level on food consumption and distribution of Formosan subterranean termite (Isoptera: Rhinotermitidae) with different soldier proportions. J. Entomol. Sci. 46: 1-13.

Gautam, B. K., and G. Henderson. 2011b. Relative humidity preference and survival of starved Formosan subterranean termites (Isoptera: Rhinotermitidae) at various temperature and relative humility conditions. Environ. Entomol. 40: 1232-1238.

Hapukotuwa, N. K., and J. K. Grace. 2011. Comparative study of the resistance of six Hawaii-grown bamboo species to attack by the subterranean termites Coptotermes formosanus Shiraki and Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Insects 2: 475-485.

Helassa, N., A. M’Charek, H. Quiquampoix, S. Noinville, P. Déjardin, R. Frutos, S. Staunton. 2011. Effects of physicochemical interactions and microbial activity on the persistence of Cry1Aa Bt (Bacillus thuringiensis) toxin in soil. Soil Biol. Biochem. 43: 1089-1097.

Henderson, G. 2008. The termite menace in New Orleans: did they cause the floodwalls to tumble? Am. Entomol. 54: 156-162.

Hernández-Rodríguez, C.S., A. Boets, J. Van Rie, and J. Ferré. 2009. Screening and identification of vip genes in Bacillus thuringiensis strains. J. Appl. Microbiol. 107:219-225.

Husseneder, C., and J. K. Grace. 2005. Genetically engineered termite gut bacteria (Enterobacter cloacae) deliver and spread foreign genes in termite colonies. Appl. Microbiol. Biotechnol. 68: 360-367.

James, C., 2011. Executive summary of global status of commercialized biotech/GM crops. Brief 43, pp. 290. ISAAA Ithaca, NY, USA.

Khan, K. I., Q. Fazal, and R.H. Jafri. 1977. Pathogenicity of locally discovered Bacillus thuringiensis strain to the termites: Heterotermes indicola (Wassman) and Microcerotermes championi (Snyder). Pak. J. Sci. Res. 29: 12–13.

Khan, K. I., R. H. Jafri, and M. Ahmad. 1985. The pathogenicity and development of Bacillus thuringiensis in termites. Pak. J. Zool. 17: 201-209.

Khan, K. I., R. H. Jafri, and M. Ahmed. 2004. Enhancement of pathogenicity of Bacillus thuringiensis by gamma rays. Pol. J. Microbiol. 53:159-66.

Khan, K. I.. 1981. Ph.D. Thesis. Study of pathogens of termites of Pakistan, University of the Punjab, Lahore, Pakistan.

Khan, K.I., Q. Fazal, and R.H. Jafri. 1978. Development of Bacillus thuringiensis in a termite, Heterotermes indicola (Wassman). Pak. J. Sci. Res. 30: 117-119.

Koziel, M. G. , G. L. Beland, C. Bowman, N. B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desai, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPherson, M. R. Meghji, E. Merlin, R. Rhodes, G. W. Warren, M. Wright and S. V. Evola. 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Nat. Biotechnol. 11: 194-200.

Li, S.-N., Y.-L. Yu, D.-Y. Zhang, D.-F. Fan, J. He, Y. Genrong, and G.-R. Yuan. 2001. Effect of Brown-rot Fungi, Gloeophyllum trabeum, on trail-following responses to several insecticides and on field efficacy for dam termite control. Chinese J. Pest. Sci. 3: 35-40 (in Chinese).

Mill, A. E.. 1992. Termites as agricultural pests in Amazonas, Brazil. Outlook Agr. 21: 41–46.

Mohan, M., S. N. Sushil, G. Selvakumar, J. C. Bhatt, G. T. Gujar, and H. S. Gupta. 2009. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L. Pest Manag. Sci. 65: 27-33.

Muchaonyerwa, P. , and S. M. Waladde. 2007. Persistence of the pesticidal Bacillus thuringiensis protein expressed in Bt maize plant materials in two soils of the Central Eastern Cape, South Africa. S. Afr. Tydskr. Plant Grond 24: 26-31.

Naranjo, S.. 2009. Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev. Perspect. Agric. Vet. Sci. Nutrit. Nat. Resour. 4: 1-23.

Nkunika, P. O. Y.. 1994. Control of termites in Zambia: practical realities. Insect Sci. Appl. 15: 241–245.

Roh, J. Y., J. Y. Choi, M. S. Li, B. R. Jin, and Y. H. Je. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-559.

Rosengaus, R. B., T. Cornelisse, K. Guschanski and J. F. A. Traniello. 2007. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis. Naturwissenschaften 94: 25-33.

Rouland-Lefèvre, C. 2011. Termites as pests of agriculture. pp: 499-517 in: D. E. Bignell, Y. Roisin and N. Lo (eds.) Biology of termites: a modern Synthesis.

Sanahuja, G., R. J. Banakar, R. M. Twyman, T. Capell, and P. Christou. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283-300.

Saxena D., S. Pushalkar, and G. Stotzky. 2010. Fate and effects in soil of Cry proteins from Bacillus thuringiensis: influence of physicochemical and biological characteristics of soil. The Open Toxinol. J. 3:151-171.

Schnepf, E., N. Crickmore, J. V. Rie, D. Lereclus, J. Baum, J. Feitelson1, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. R. 62: 775-806.

Singha, D., B. Singha, and B. K. Dutta. 2010. In vitro pathogenicity of Bacillus thuringiensis against tea termites. J. Biol. Control 24: 279-281.

Smythe, R. V. and H. C. Coppel. 1965. The susceptibility of Reticulitermes flavipes (Kollar) and other termite species to an experimental preparation of Bacillus thuringiensis Berliner. J. Invertebr. Pathol. 7: 423-426.

Su, N. Y., and R. H.Scheffrahn. 1986. The Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae), in the United States: 1907-1985, pp: 31-38. In: P. A. Zungoli (ed.), Proceedings of the National Conference on Urban Entomology, Univ. Maryland, College Park, MD.

Tan, S. Y., B. F. Cayabyab, E. P. Alcantara, Y. B. Ibrahim, F. Huang, E.E. Blankenship, and B. D. Siegfried. 2011. Comparative susceptibility of Ostrinia furnacalis, Ostrinianubilalis and Diatraea saccharalis (Lepidoptera: Crambidae) to Bacillus thuringiensis Cry1 toxins. Crop Prot. 30: 1184-1189.

Tapp, H., and G. Stotzky. 1998. Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol. Biochem. 30: 471–476.

Vincent, S.. 2010. From microbial sprays to insect-resistant transgenic plants: history of the biospesticide Bacillus thuringiensis. A review. Agron. Sustain. Dev. 31: 217-231.

Zhang, J.-H., Z.-L. Liu, and L. Huang. 2009. A review on the termite bait monitoring system. J. Hunan Univ. Arts Sci. 21: 78-80 (in Chinese).

Zhang, S.-T., X.-E. Lin, and Z. Liang. 1995. A primary studies on the biological and ecological specialty of the termites. J. Shanxi Agric. Sci. 23: 44-48 (in Chinese).




DOI: http://dx.doi.org/10.13102/sociobiology.v59i4.505

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.604