Cuticular Hydrocarbon Variation of Castes and Sex in the Weaver Ant Camponotus textor (Hymenoptera: Formicidae)

Fabio Santos do Nascimento

Abstract


Cuticular hydrocarbons play important roles as chemical signatures of individuals, castes, sex and brood. They also can mediate the regulation of egg laying in ants, by informing directly or indirectly the reproductive status of queens. In this study we asked whether cuticular hydrocarbon profiles are correlated with castes and sex of Camponotus textor. Cuticular hydrocarbons were extracted from part of a mature colony (80 workers, 27 major workers, 27 queens, 27 virgin queens and 27 males). Results showed that cuticular hydrocarbons varied quantitatively and qualitatively among the groups and this variation was sufficiently strong to allow separation of castes and genders. We discuss the specificity of some compounds as possible regulatory compounds of worker tasks and reproduction in C. textor.


Keywords


cuticular hydrocarbons; Camponotus textor; castes and sex

Full Text:

PDF

References


Aitchison, J. 1986. The statistical analysis of compositional data, monographs on statistics and Applied Probability. Chapman and Hall, London.

Blomquist, G.J. & A.G Bagnères 2010. Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology. Cambridge University Press: 492.

Boulay, R., X. Cerdá, T. Simon, M. Roldan, & A. Hefetz 2007. Intraspecific competition in the ant Camponotus cruentatus: should we expect the ‘dear enemy’ effect? Animal Behaviour 1: 1-9.

Breed, M.D. & B. Bennett 1987. Kin recognition in highly eusocial insects. In: Fletcher, D J.C. & Michener, C.D. (Eds). Kin Recognition in Animals. New York: J. Wiley: 243-285.

Cuvillier-Hot, V., M. Cobb, C. Malosse & C. Peeters 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. Journal of. Insect Physiology 47: 485– 493.

Dahbi, A. & A. Lenoir 1998. Queen and colony odour in the multiple nest ant species, Cataglyphis iberica (Hymenoptera, Formicidae). Insectes sociaux 45: 301–313.

de Biseau, J.C., L. Passera, D. Daloze & S. Aron 2004. Ovarian activity correlates with extreme changes in cuticular hydrocarbon profile in the highly polygynous ant, Linepithema humile. Journal Insect Physiology 50: 585–593.

Dietemann, V., C. Peeters, J. Liebig, V. Thivet & B. Hölldobler 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proceedings of the National Academy of Sciences of the United States of America 100: 10341-10346.

Endler, A., J. Liebig, T. Schmitt, J.E. Parker, G.R. Jones, P. Schreier & B. Hölldobler 2004. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proceedings of the National Academy of Sciences of the United States of America 101:2045-2950.

Endler, A., J Liebig & B. Hölldobler 2006. Queen Fertility, Egg Marking and Colony Size in the Ant Camponotus floridanus. Behavioral Ecology and Sociobiology 59: 490-499.

Greene, M.J. & D.M. Gordon 2003. Cuticular hydrocarbons inform task decisions. Nature 423: 32.

Heinze, J., B. Stengl & M.F Sledge 2002. Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa. Behavioral Ecology and Sociobiology 52:59–65.

Hölldobler, B. & C.D. Michener 1980. Mechanisms of identification and discrimination in social hymenoptera. In: Markl, H. (ed.) Evolution of Social Behaviour. Weinheim. Verlag Chemie: 35e58.

Howard, R.W., & G.J. Blomquist 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology 50: 371-93.

Kaib, M., B. Eisermann, E. Schoeters, J. Billen, S. Franke & W. Francke 2000. Task-related variation of postpharyngeal and cuticular hydrocarbon compositions in the ant Myrmicaria eumenoides. Journal of Comparative Physiology 186: 939-948.

Lalzar, I, T. Simon & R.K. Vander-Meer 2010. Alteration of cuticular hydrocarbon composition affects heterospecific nestmate recognition in the carpenter ant Camponotus fellah. Chemoecology 20:19–24.

Leonhardt, S.D., A.S. Brandstaetter & C.J. Kleineidam 2007. Reformation process of the neuronal template for nestmate-recognition cues in the carpenter ant Camponotus foridanus. Journal of Comparative Physiology 193: 993–1000.

Liebig, J., C. Peeters, N.J. Oldham, C. Markstädter & B. Hölldobler 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proceedings of the National Academy of Sciences of the United States of America 97: 4124–4131.

Longino, J.T. 2006. New species and nomenclatural changes for the Costa Rican ant fauna (Hymenoptera: Formicidae). Myrmecologische Nachrichten 8: 131-143.

Martin, S. & F. Drijfhout 2009a. A review of ant cuticular hydrocarbons. Journal of. Chemical Ecology 35: 1151–1161.

Monnin, T.; C. Malosse, & C. Peeters 1998. Solid-phase microextraction and cuticular hydrocarbon differences related to reproductive activity in queenless ant Dinoponera quadriceps. Journal of Chemical Ecology 24: 473-490.

Nunes, T.M., F.S. Nascimento, I.C. Turatti, N.P. Lopes & R. Zucchi 2008. Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Animal Behaviour 75: 1165-1171.

Oettler, J., T. Schmitt, G. Herzner & J. Heinze 2008. Chemical profiles of mated and virgin queens, egg-laying intermorphs and workers of the ant Crematogaster smithi. Journal of Insect Physiology 54: 672–679.

Peeters, C. & B. Hölldobler 1995. Reproductive cooperation between queens and their mated workers: the complex life history of an ant with a valuable nest. Proceedings of the National Academy of Sciences of the United States of America 92: 10977– 10979.

Peeters, C., T. Monnin, & C. Malosse 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proceedings of the Royal Society 266: 1323- 1327.

Santos, J.C. & K. Del-Claro 2009. Ecology and behaviour of the Weaver ant Camponotus (Myrmobrachys) senex. Journal of Natural History 43: 1423–1435.

Santos, J.C., M. Yamamoto, F.R. Oliveira & K. Del-Claro 2005a. Behavioral Repertory of the Weaver Ant Camponotus (Myrmobrachys) senex (Hymenoptera: Formicidae). Sociobiology 45: 1-11.

Santos, J. C., A.P. Korndörfer & K. Del-Claro 2005b. Defensive Behavior of the Weaver Ant Camponotus (Myrmobrachys) senex (Formicidae: Formicinae): Drumming and Mimicry. Sociobiology 46: 1-10.

Schremmer, F. 1979a. Das Nest der neotropischen Weberameise Camponotus (Myrmobrachys) senex Smith (Hymenoptera: Formicidae). Zoologische Anzeiger 203: 273-282.

Schremmer, F. 1979b. Die nahezu unbekannte neotropische Weberameise Camponotus (Myrmobrachys) senex (Hymenoptera: Formicidae). Entomologia Generalis 5: 363- 378.

Sturgis, S.J. & D.M. Gordon 2012. Nestmate recognition in ants (Hymenoptera: Formicidae): a review. Myrmecological News 16: 101-110.

Tannure-Nascimento, I. C., F.S Nascimento, J.O. Dantas & R. Zucchi 2009. Decision rules for egg recognition are related to functional roles and chemical cues in the queenless ant Dinoponera quadriceps. Naturwissenschaften 96: 857-861.

van Wilgenburg, E.; M.R.E. Symonds & M.A. Elgar 2011. Evolution of cuticular hydrocarbon diversity in ants. Journal of Evolutionary Biology 24: 1188–1198.

Vander Meer, R.K. & L. Morel 1998. Nestmate recognition in ants. In: Vander Meer, R.K., Breed, M.D., Espelie, K.E. & Winston, M.L. (eds) Pheromone communication in social insects: Ants, wasps, bees and termites. Westview, Boulder: 79–103.

Wagner D., M.J.F. Brown, P. Broun, W. Cuevas, L.E. Moses, D.L. Chao & D.M. Gordon 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. Journal of Chemical Ecology 24:2021-2037.

Wagner, D., M. Tissot & D.M. Gordon 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. Journal of Chemical Ecology 27: 1805– 1819.

Wilson, E.O. 1971. Social Insects. Science, New Series 172: 406.




DOI: http://dx.doi.org/10.13102/sociobiology.v59i3.564

Refbacks

  • There are currently no refbacks.


JCR Impact Factor 2018: 0.604