Estimation of Nuclear Genome Size of Three Species of Camponotus (Mayr, 1861) (Hymenoptera: Formicidae: Formicinae) and Their Cytogenetic Relationship

Hilton Jeferson Alves Cardoso de Aguiar, Luísa Antônia Campos Barros, Fernanda Aparecida Ferrari Soares, Carlos Roberto de Carvalho, Silvia das Graças Pompolo


The chromosome variability among ant species is remarkable, and the processes generating such variation are still under discussion since polyploidy has been observed in some distinct taxa. The chromosome number of species belonging to the Camponotus, subgenera Myrmothrix and Myrmobrachys, are highly different, whereas, the first subgenus has double the number of chromosomes of the second. In order to test the hypothesis of chromosome number doubling through polyploidy, the genome sizes of Camponotus (Myrmothrix) rufipes, Camponotus (Myrmothrix) renggeri and Camponotus (Myrmobrachys) crassus were estimated by flow cytometry. The chromosome number of specimens from the nests studied was also defined. No significant variation was noted in the genome size among them. The mean haploid genome size value (1C) of workers for the three species was 286.16 Mpb (0.29 pg). The polyploidy hypothesis can be ruled out as an evolutionary step linking the karyotype variations among the three studied species since the genome size of C. crassus with 2n = 20 chromosomes was the same as that of C. rufipes and C. renggeri with 2n = 40. The lack of variation in the amount of DNA between the related species C. rufipes and C. renggeri also demonstrate that flow cytometry is not an adequate approach to distinguish them. Our results highlight the importance of combining distinct methods, DNA quantification, and cytogenetics from the same colony. Understanding the path of chromosome evolution of three species with distinct degrees of relatedness should provide further information in enriching our knowledge about the Minimum Interaction Theory.


flow cytometry; chromosome number; genome size; evolution; ants

Full Text:



Ardila‐Garcia, A.M., Umphrey GJ and Gregory TR (2010). An expansion of the genome size dataset for the insect order Hymenoptera, with a first test of parasitism and eusociality as possible constraints. Insect Mol. Biol. 19(3): 337-346. doi: 10.1111/j.1365-2583.2010.00992.x.

Bolton B (2014). An online catalog of the ants of the world. Available from (accessed 08 November 2015).

Bonasio, R., Zhang, G., Ye, C., Mutti, N.S., Fang, X., et al. (2010). Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329(5995): 1068-1071. doi: 10.1126/science.1192428.

Brady, S.G., Gadau, J., Ward, P.S. (2000). Systematics of the ant genus Camponotus (Hymenoptera: Formicidae): a preliminary analysis using data from the mitochondrial gene cytochrome oxidase I. In: Austin A, Dowton D (eds). Hymenoptera: Evolution, Biodiversity and Biological Control. Csiro Publishing, Collingwood, Victoria, pp 131-139.

Cardoso, D.C., Carvalho, C.R., Cristiano, M.P., Soares, F.A.F. Tavares, M.G. (2012). Estimation of nuclear genome size of the genus Mycetophylax Emery, 1913: Evidence of no whole-genome duplication in Neoattini. C. R. Biol. 335(10): 619-624. doi: 10.1016/j.crvi.2012.09.012.

Delabie, J.H.C., Fernandez, F., Majer, J.D. (2012). Editorial Advances in Neotropical Myrmecology, Psyche: A Journal of Entomology (Cambridge), 2862. doi:10.1155/2012/286273

Doležel, J., Bartos, J., Voglmayr, H., Greilhuber, J. (2003). Nuclear DNA content and genome size of trouts and human. Cytometry 51: 127-128. doi: 10.1002/cyto.a.10013.

Doležel, J. Bartos, J. (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95: 99-110. doi: 10.1093/aob/mci005.

Goñi, B., Zolessi, L.T. Imai, H.T. (1983). Karyotypes of thirteen ant species from Uruguay (Hymenoptera, Formicidae). Caryologia 36: 363-371. doi: 10.1080/00087114.1983.10797677

Gregory, T.R. (2015). Animal genome size database. Accessed 13 February 2015.

Hashmi, A.A. (1073). A revision of the Neotropical ant subgenus Myrmothrix of genus Camponotus. Studia Entomol. 16(1-4): 1-140.

Imai, H.T., Taylor, R.W., Crosland, M.W. Crozier, R.H. (1988). Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn. J. Genet. 63: 159-185. doi: /10.1266/jjg.63.159.

Imai, H.T., Taylor, R.W. Crozier, R.H. (1994). Experimental bases for the minimum interaction theory. Chromosome evolution in ants of the Myrmecia pilosula species complex (Hymenoptera: Formicidae: Myrmeciinae). Jap. J. Genet. 69: 137-182. doi: 10.1266/ggs.69.137.

Lopes, D.M., Carvalho, C.R., Clarindo, W.R., Praça, M.M. Tavares, M.G. (2009). Genome size estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40(5): 517-523. doi: 10.1051/apido/2009030.

Loureiro, J., Rodriguez, E., Doležel, J., Santos, C. (2006a). Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann. Bot. 98: 679-689. doi: 10.1093/aob/mcl141.

Loureiro, J., Rodriguez, E., Doležel, J., Santos, C. (2006b). Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann. Bot. 98: 515-527. doi: 10.1093/aob/mcl140.

Mackay, W.P., The systematics and biology of the new world carpenter ants of the hyperdiverse genus Camponotus (Hymenoptera: Formicidae), The University of Texas, Available from (accessed 21 January 2015).

Mariano, C.S.F., Pompolo, S.G., Delabie, J.H.C. Campos, L.A.O. (2001). Estudos cariotípicos de algumas espécies neotropicais de Camponotus Mayr (Hymenoptera: Formicidae). Rev. Bras. Entomol. 45(4): 267-274.

Mariano, C.S.F., Delabie, J.H.C., Campos, L.A.O., Pompolo, S.G. (2003). Trends in karyotype evolution in the ant genus Camponotus (Hymenoptera: Formicidae). Sociobiology 42(3): 831-839.

Mariano, C.S.F., Pompolo, S.G., Barros, L.A.C., Mariano-Neto, E., Campiolo, S., Delabie, J.H.C. (2008). A biogeographical study of the threatened ant Dinoponera lucida Emery (Hymenoptera: Formicidae: Ponerinae) using a cytogenetic approach. Insect Conserv. Divers. 1: 161-168. doi: 10.1111/j.1752-4598.2008.00022.x.

Marinotti, O., Cerqueira, G.C., Almeida, L.G.P., Ferro, M.I.T., et al. (2013). The genome of Anopheles darlingi, the main Neotropical malaria vector. Nucleic Acids Res. 41(15): 7387-7400. doi: oi: 10.1093/nar/gkt484.

Nygaard, S., Yannick, W. (2015). Ant genomics (Hymenoptera: Formicidae): challenges to overcome and opportunities to seize. Myrmecol. News 21: 59-72.

Otto, F.J. (1990). DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA, In: Darzynkiewiez Z, Crissman HA, Robinson JP (eds.). Methods in Cell Biology, Vol. 33, Academic Press, San Diego, pp 105-110.

Ronque, M.U.V., Azevedo-Silva, M., Mori, G.M.M., Souza, A.P., Oliveira, P.S. 2015.

Three ways to distinguish species: using behavioural, ecological, and molecular data to tell apart two closely related ants, Camponotus renggeri and Camponotus rufipes (Hymenoptera: Formicidae). Zool. J. Linnean Society, 2015: 1-12. doi: 10.1111/zoj.12303.

Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E., Crozier, R.H. (2010). Integrative taxonomy: a multisource approach to exploring biodiversity. Annu. Rev. Entomol. 55: 421-438. doi: 0.1146/annurev-ento-112408-085432.

Seifert, B. (2009). Cryptic species in ants (Hymenoptera: Formicidae) revisited: we need a change in the alpha-taxonomic approach. Myrmecol. News 12: 149-166.

Shapiro, H.M. (2003). Practical flow cytometry, 4th edition. John Wiley & Sons, New Jersey.

Tsutsui, N.D., Suarez, A.V., Spagna, J.C., Johnston, J.S. (2008). The evolution of genome size in ants. BMC Evol. Biol. 8(1): 64.

Wilson, E.O. (1976). Which are the most prevalent ant genera? Studia Entomol. 19(1-4): 187-200.

Wurm, Y., Wang, J., Riba-Grognuz, O., Corona, M., Nygaard, S., et al. (2010) The genome of the fire ant Solenopsis invicta. Proc. Nat. Acad. Sci. USA 108(14): 5679-5684. i: 10.1073/pnas.1009690108.



  • There are currently no refbacks.

JCR Impact Factor 2018: 0.604