Predicting Climate Change Impacts on Crop Pollinators in Brazil
DOI:
https://doi.org/10.13102/sociobiology.v72i2.11277Keywords:
ecosystem services, conservation, global changes, bees, food productionAbstract
Pollinators are critical elements of biodiversity as they participate in the reproduction of plant species. Due to their importance in food production, they are one of the most studied groups of ecosystem service providers globally. However, climate change poses a significant threat to this important service delivered to agriculture. We aim to summarize the main advances in Brazilian research on crop pollinators under climate change in the last years, emphasizing future impact predictions. To analyze the effects of climate change on agricultural pollinators, structured data on pollinators and crop species were organized, which also allowed advances in the structuring of data related to the dependence of Brazilian crops on pollinators, as well as determining the value of the pollination service for agriculture. Studies analyzed here cover the following issues: [1] interaction networks; [2] crop pollinators, crop dependence, and pollination service valuation; and [3] climate change impacts. We also present ten recommendations to foster further initiatives related to crop pollinators under climate change.
Downloads
References
Acosta, A.L., dos Santos, C.F., Imperatriz-Fonseca, V.L., Oliveira, R.C., & Giannini, T.C. (2024). A methodological approach to identify priority zones for monitoring and assessment of wild bee species under climate change. Frontiers in Bee Science, 2: 1-10.
Bascompte, J. & Jordano, P. (2007). Plant-Animal Mutualistic Networks: The Architecture of Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 38: 567-593.
Bashir, M.A., Alvi, A.M., Khan, K.A., Rehmani, M.I.A., Ansari, M.J., Atta, S., Ghramh, H.A., Batool, T., & Tariq, M. (2018). Role of pollination in yield and physicochemical properties of tomatoes (Lycopersicon esculentum). Saudi Journal of Biological Sciences, 25: 1291-1297.
Bezerra, A.D.M., Pacheco Filho, A.J.S., Bomfim, I.G.A., Smagghe, G., & Freitas, B.M. (2019). Agricultural area losses and pollinator mismatch due to climate changes endanger passion fruit production in the Neotropics. Agricultural Systems, 169: 49-57.
Bogusch, P., Bláhová, E., & Horák, J. (2020). Pollen specialists are more endangered than non-specialised bees even though they collect pollen on flowers of non-endangered plants. Arthropod Plant Interact, 14; 759–769.
Borges, R.C., Brito, R.M., Imperatriz-Fonseca, V.L., & Giannini, T.C. (2020a). The value of crop production and pollination services in the eastern Amazon. Neotropical Entomology, 49: 545-556.
Borges, R.C., Padovani, K., Imperatriz-Fonseca, V.L., Giannini, T.C. (2020b). A dataset of multi-functional ecological traits of Brazilian bees. Scientific Data, 7: 120.
Bradley, B.A., Beaury, E.M., Fusco, E.J., Lopez, B.E. (2023). Invasive species policy must embrace a changing climate. BioScience, 73: 124–133.
Campbell, A.J., Carvalheiro, L.G., Maués, M.M., Jaffé, R., Giannini, T.C., Freitas, M.A.B., Coelho, B.W.T., & Menezes, C. (2018). Anthropogenic disturbance of tropical forests threatens pollination services to açaí palm in the Amazon river delta. Journal of Applied Ecology, 55: 1725-1736.
Campbell, A.J., Carvalheiro, L.C., Gastauer, M., Almeida-Neto, M., & Giannini, T.C. (2019). Pollinator restoration in Brazilian ecosystems relies on a small but phylogenetically-diverse set of plant families. Scientific Reports, 9: 17383.
Campbell, A.J., Lichtenberg, E.M., Carvalheiro, L.G., Menezes, C., Borges, R.C., Coelho, B.W.T., Freitas, M.A.B.F., Giannini, T.C., Leão, K.L., Oliveira, F.F., Silva, T.S.F, & Maués, M.M. (2022). High bee functional diversity buffers crop pollination services against Amazon deforestation. Agriculture, Ecosystems and Environment, 326: 107777.
Cariveau, D.P., & Winfree, R. (2015). Causes of variation in wild bee responses to anthropogenic drivers. Current Opinion in Insect Science, 10: 104-109.
Carvalheiro, L.G., Cordeiro, G.D., Marques, B.F., Menezes, P.P., Consorte, P.C., & Giannini, T.C. (2024). Importance of quantifying knowledge shortfalls on tropical pollinators in the face of global environmental change – Brazilian bees as a case study. Sociobiology, 71: e11276.
Carvalho, R.L. et al. 2023. Pervasive gaps in Amazonian ecological research. Current Biology, 33, 3495-3504.e4.
Cavalcante, R.B.L., Nunes, S., Viademonte, S., Rodrigues, C.M.F., Gomes, W.C., Ferreira, J.S, Pontes, P.R.M., Giannini, T.G., Awade, M., Miranda, L.S., & Nascimento, W.R. (2022). Multicriteria approach to prioritize forest restoration areas for biodiversity conservation in the eastern Amazon. Journal of Environmental Management, 318: 115590.
Coradin, L., Camillo, J., & Vieira, I.C.G. (2022). Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro: região norte. Ministério do Meio Ambiente. Brasília, DF.
Cordeiro, G. D., & Dötterl, S. (2023). Global warming impairs the olfactory floral signaling in strawberry. BMC Plant Biology, 23: 549.
Cordeiro, G. D., & Dötterl, S. (2023). Floral scents in bee-pollinated buckwheat and oilseed rape under a global warming scenario. Insects, 14: 242.
Correa-Lima, A.P.A., Varassin, I.G., Barve, N., & Zwiener, V.P. (2019). Spatio-temporal effects of climate change on the geographical distribution and flowering phenology of hummingbird-pollinated plants. Annals of Botany, 124: 389-398.
Costa, W.F., Ribeiro, M., Saraiva, A.M., Imperatriz-Fonseca, V.L., & Giannini, T.C. (2018). Bat diversity in Carajás National Forest (Eastern Amazon) and potential impacts on ecosystem services under climate change. Biological Conservation, 218: 200–210.
Dicks, L.V., Breeze, T.D., Ngo, H.T., et al. (2021). A global-scale expert assessment of drivers and risks associated with pollinator decline. Nature Ecology and Evolution, 5: 1453–1461.
Eilers, E.J. et al. (2011). Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS ONE, 6: e21363.
Elias, M.A.S., Borges, F.J.A., Bergamini, L.L., Franceschinelli, E.V., & Sujii, E.R. (2017). Climate change threatens pollination services in tomato crops in Brazil. Agriculture, Ecosystems and Environment, 239: 257-264.
FAO – Food and Agriculture Organization. (2015). Climate change and food security: risks and responses. FAO, Rome.
Ferreira, L.A.C., Giannini, T.C., Zanella, F.C.V., & Albuquerque, P.M.C. (2023). Floral preferences of carpenter bees (Apidae: Xylocopini: Xylocopa) from Maranhão, Northeast Brazil. Studies on Neotropical Fauna and Environment, 59, 772–786.
Ferreira, L.A.C. (2024). Distribuição, recursos e efeitos das mudanças climáticas sobre as abelhas carpinteiras (Apidae: Xylocopini) em áreas de transição, Maranhão, Brasil. PhD Thesis. Universidade Federal do Maranhão.
Ferreira, J.C., Sabino, W.O., & Giannini, T.C. (2024). Valuation of agricultural production and pollination services in palm trees (Arecaceae) in the Amazon forest. Arthropod-Plant Interactions, 18: 425–437.
Feuerbacher, A., Herbold, T., Krumbe, F. (2024). The Economic Value of Pollination Services for Seed Production: A Blind Spot Deserving Attention. Environmental and Resource Economics, 87: 881–905.
Fick, S.E., & R.J. Hijmans, (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37: 4302-4315.
Fidalgo, A.O., & Kleinert, A.M.P. (2010). Floral preferences and climate influence in nectar and pollen foraging by Melipona rufiventris Lepeletier (Hymenoptera: Meliponini) in Ubatuba, São Paulo State, Brazil. Neotropical Entomology, 39: 879-884.
Françoso, E., Zuntini, A.R., & Arias, M.C. (2019). Combining phylogeography and future climate change for conservation of Bombus morio and B. pauloensis (Hymenoptera: Apidae). Journal of Insect Conservation, 23: 63–73.
Freimuth, J., Bossdorf, O., Scheepens, J.F., & Willems, F.M. (2022). Climate warming changes synchrony of plants and pollinators. Proceedings of Royal Society B, 289: 20212142.
Freitas, B.M., & Bezerra, A.D.M. (2024). Criação, multiplicação e manejo de abelhas nativas para a polinização agrícola no Brasil. Fortaleza, UFC.
Garibaldi, L.A., Aizen, M.A., Klein, A.M., Cunningham, S.A., & Harder, L.D. (2011). Global growth and stability of agricultural yield decrease with pollinator dependence. PNAS, 108: 5909-5914.
Garibadi, L.A. et al. (2013). Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339: 1608-1611.
Garibaldi, L. A. et al. (2021). Negative impacts of dominance on bee communities: Does the influence of invasive honey bees differ from native bees? Ecology, 102: e03526.
Gateau-Rey, L., Tanner, E.V.J., Rapidel, B., Marelli, J-P., & Royaert, S. (2018) Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS ONE, 13: e0200454.
Giannini, T.C., Acosta, A.L., Garófalo, C.A., Saraiva, A.M., Santos, I.A., & Imperatriz-Fonseca, V.L. (2012a). Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling, 244: 127-131.
Giannini, T.C., Acosta, A.L., Saraiva, A.M., Alves-dos-Santos, I., & Garófalo, C.A. (2012b). Impacto de mudanças climáticas em abelhas solitárias: um estudo de caso envolvendo duas espécies de Centris. In: Imperatriz-Fonseca, V.L. et al. (orgs). Polinizadores no Brasil: Contribuição e Perspectivas para a Biodiversidade, Uso Sustentável, Conservação e Serviços Ambientais. São Paulo: Editora da Universidade de São Paulo, 2012.
Giannini, T.C., Acosta, A.L., Silva, C.I., Oliveira, P.E.A.M., Imperatriz-Fonseca, V.L., & Saraiva, A.M. (2013a). Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agriculture, Ecosystems and Environment, 171: 39– 46.
Giannini, T.C., Chapman, D.S., Saraiva, A.M., Alves-dos-Santos, I., & Biesmeijer, J.C. (2013b). Improving species distribution models using biotic interactions: a case study of parasites, pollinators and plants. Ecography, 36: 649–656.
Giannini, T.C., Garibaldi, L.A., Acosta, A.L., Silva, J.S., Maia, K.P., Saraiva, A.M. Guimarães Jr., P.R., & Kleinert, A.M.P. (2015a). Native and non-native supergeneralist bee species have different effects on plant-bee networks. PLoS ONE, 10: e0137198.
Giannini, T.C., Boff, S., Cordeiro, G.D., Cartolano Jr., E.A., Veiga, A.K., Imperatriz-Fonseca, V.L., & Saraiva, A.M. (2015b). Crop pollinators in Brazil: a review of reported interactions. Apidologie, 46: 209–223.
Giannini, T.C., Cordeiro, G.D., Freitas, B.M., Saraiva, A.M., & Imperatriz-Fonseca, V. L. (2015c). The dependence of crops for pollinators and the economic value of pollination in Brazil. Journal of Economic Entomology, 108: 849-857.
Giannini, T.C., Tambosi, L.R., Acosta, A.L., Jaffé, R., Saraiva, A.M., Imperatriz-Fonseca, V.L., & Metzger, J.P. (2015d). Safeguarding ecosystem services: a methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS ONE, 10: e0129225.
Giannini, T.C., Costa, W.F., Cordeiro, G.D., Imperatriz-Fonseca, V.L., Saraiva, A.M., Biesmeijer, J., & Garibaldi, L.A. (2017a). Projected climate change threatens pollinators and crop production in Brazil. PLoS One, 12: e0182274.
Giannini, T.C., Maia-Silva, C., Acosta, A.L., Jaffé, R., Carvalho, A.T., Martins, C.F., Zanella, F.C.V., Carvalho, C.A.L., Hrncir, M., Saraiva, A.M., Siqueira, J.O., & Imperatriz-Fonseca, V.L. (2017b). Protecting a managed bee pollinator against climate change: strategies for an area with extreme climatic conditions and socioeconomic vulnerability. Apidologie, 48: 784-794.
Giannini, T.C., Giulietti, A.M., Harley, R.M., Viana, P.L., Jaffe, R., Alves, R., Pinto, C.E., Mota, N.F.O., Caldeira Jr., C.F., Imperatriz-Fonseca, V.L., Furtini, A.E., & Siqueira, J.O. (2017c). Selecting plant species for practical restoration of degraded lands using a multiple-trait approach. Austral Ecology, 42: 510–521.
Giannini, T.C., Alves, D.A., Alves, R., Cordeiro, G.D., Campbell, A.J., Awade, M., Bento, J.M.S., Saraiva, A.M., & Imperatriz-Fonseca, V.L. (2020a). Unveiling the contribution of bee pollinators to Brazilian crops with implications for bee management. Apidologie, 51: 406–421.
Giannini, T.C., Costa, W.F., Borges, R.C., Miranda, L., Costa, C.P.W., Saraiva, A.M., & Imperatriz-Fonseca, V.L. (2020b). Climate change in the Eastern Amazon: crop-pollinator and occurrence-restricted bees are potentially more affected. Regional Environmental Change, 20: 9.
Gonzalez, A.M.M., Dalsgaard, B., & Olesen, J.M. (2010). Centrality measures and the importance of generalist species in pollination networks. Ecological Complexity, 7: 36-43.
Gupta, N., Martindale, A., Supernant, K., & Elvidge, M. (2023). The CARE Principles and the Reuse, Sharing, and Curation of Indigenous Data in Canadian Archaeology. Advances in Archaeological Practice, 11: 76-89.
Hrncir, M., Maia-Silva, C., Teixeira-Souza, V.H.S, & Imperatriz-Fonseca, V.L. (2019). Stingless bees and their adaptations to extreme environments. Journal of Comparative Physiology A, 205: 415–426 .
Igawa, T.K., Toledo, P.M., & Anjos, L.J.S. (2022). Climate change could reduce and spatially reconfigure cocoa cultivation in the Brazilian Amazon by 2050. PLoS ONE, 17: e0262729.
Imperatriz-Fonseca, V.L. (2020). Conhecimento indígena dos Kayapós sobre as abelhas sem ferrão. In: Imperatriz-Fonseca, V.L., Alves, D.A. Abelhas sem ferrão do Pará. A partir das expedições científicas de João M. F. Camargo. Instituto Tecnológico Vale, pp. 33-46.
IBGE. (2024). Brazilian Institute of Geography and Statistics. SIDRA Sistema IBGE de Recuperação Automática. Produção Agrícola Municipal. https://sidra.ibge.gov.br/acervo#/S/PA/A/Q - acessed on 23 October, 2024.
IPBES (2016). The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S.G. Potts, V. L. Imperatriz-Fonseca, and H. T. Ngo (eds). Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 552pp.
IPCC. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pörtner H-O, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B, editors. Cambridge and New York: Cambridge University Press, 3056pp.
Jaffé, R., Castilla, A., Pope, N., Imperatriz-Fonseca, V.L., Metzger, J.P., Arias, M.C., & Jha, S. (2016). Landscape genetics of a tropical rescue pollinator. Conservation Genetics, 17: 267–278.
Klatt, B.K., Holzschuh, A., Westphal, C., Clough, Y., Smit, I., Pawelzik, E., & Tscharntke, T. (2014). Bee pollination improves crop quality, shelf life and commercial value. Proceedings of Royal Society B, 281: 20132440.
Klein, A.M., Vaissière, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of Royal Society B, 274: 303–313.
Kleinert, A.M.P., & Giannini, T.C. (2012). Generalist Bee Species on Brazilian Bee-Plant Interaction Networks. Psyche: A Journal of Entomology, 291519.
Krechemer, F.S., & Marchioro, C.A. (2020). Past, present and future distributions of bumblebees in South America: Identifying priority species and areas for conservation. Journal of Applied Ecology, 57: 1829-1839.
Levy, B.S., Sidel, V.W., & Patz, J.A. (2017). Climate change and collective violence. Annual Review of Public Health 38: 241–57.
Lima, M.A., Lima, E., & Campos, L. (2010) Involucrum construction varies with temperature and worker activity in the stingless bee Friesella schrottkyi (Hymenoptera: Apidae). Sociobiology 55: 395-404.
Lima, V.P., & Marchioro, C.A. (2021). Brazilian stingless bees are threatened by habitat conversion and climate change. Regional Environmental Change, 21: 14.
Lopes, A.V., Porto, R.G., Cruz-Neto, O., Peres, C.A., Viana, B.F., Giannini, T.C., & Tabarelli, M. (2021). Neglected diversity of crop pollinators: Lessons from the world’s largest tropical country. Perspectives in Ecology and Conservation, 19: 500-504.
Maia, U.M., Miranda, L.S., Carvalho, A.T., Imperatriz-Fonseca, V.L., Oliveira, G.C., & Giannini, T.C. (2020). Climate-induced distribution dynamics of Plebeia flavocincta, a stingless bee from Brazilian tropical dry forests. Ecology and Evolution, 10: 10130-10138.
Maia-Silva, C., Pereira, J.S., Freitas, B.M., & Hrncir, M. (2021). Don’t stay out too long! Thermal tolerance of the stingless bees Melipona subnitida decreases with increasing exposure time to elevated temperatures. Apidologie, 52: 218–229.
Marchioro, C.A., Lima, V.P., & Sales, C.R. (2020) Climate change can affect the spatial association between stingless bees and Mimosa scabrella in the Brazilian Atlantic Forest. Apidologie, 51: 689–700.
Martins, A.C., Melo, G.A.R. (2010) Has the bumblebee Bombus bellicosus gone extinct in the northern portion of its distribution range in Brazil? Journal of Insect Conservation, 14: 207–210.
Martins, A.C., Silva, D.P., Marco, P., & Melo, G.A.R. (2015). Species conservation under future climate change: the case of Bombus bellicosus, a potentially threatened South American bumblebee species. Journal of Insect Conservation, 19: 33–43.
McElwee, P., Fernández-Llamazares, A., Aumeeruddy-Thomas, Y., Babai, D., Bates, P., Galvin, K., Guèze, M., Liu, J., Molnár, Z., Ngo, H.T., Reyes-García, V., Chowdhury, R.R., Samakov, A., Shrestha, U.B., Díaz, S., & Brondízio, E.S. (2020). Working with Indigenous and local knowledge (ILK) in large-scale ecological assessments: Reviewing the experience of the IPBES Global Assessment. Journal of Applied Knowledge, 57: 1666-1676.
Miranda, L.S., Imperatriz-Fonseca, V.L., & Giannini, T.C. (2019). Climate change impact on ecosystem functions provided by birds in southeastern Amazonia. PLoS ONE, 14: e0215229.
Miranda, L.S., Awade, M., Jaffe, R., Costa, W.F., Trevelin, L.C., Borges, R.C., Brito, R.M., Tambosi, L.R., & Giannini, T.C. (2021). Combining connectivity and species distribution modeling to define conservation and restoration priorities for multiple species: A case study in the eastern Amazon. Biological Conservation, 257: 109148.
Montalva, J., Hoagland, B., Arbetman, M.P., Morales, C.L., Aizen, M.A., Vilela, B., & Silva, D.P. (2024). Macroecological perspectives on the competition between the native and invasive bumblebees in southern South America under climate change. Biological Invasions 26: 733–744.
Moritz, R.F.A., Härtel, S., & Neumann, P. (2005). Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience, 12: 289–301.
Munroe, R., Roe, D., Doswald, N., Spencer, T., Möller, I., Vira, B., Reid, H., Kontoleon, A., Giuliani, A., Castelli, I., & Stephens, J. (2012). Review of the evidence base for ecosystem-based approaches for adaptation to climate change. Environmental Evidence, 1: 13.
Nguyen, T.T., Grote, U., Neubacher, F., Rahut, D.B., Do, M.H., & Paudel, G.P. (2023). Security risks from climate change and environmental degradation: implications for sustainable land use transformation in the Global South. Current Opinion in Environmental Sustainability, 63: 101322.
Oliveira, F.S., Mendonça, M.W.A., Vidigal, M.C.S., Rêgo, M.M.C., & Albuquerque, P.M.C. (2010). Comunidade de abelhas (Hymenoptera, Apoidea) em ecossistema de dunas na Praia de Panaquatira, São José de Ribamar, Maranhão, Brasil. Revista Brasileira de Entomologia, 54: 82–90.
Oliveira, W., Colares, L.F., Porto, R.G., Viana, B.F., Tabarelli, M., & Lopes, A.V. (2024). Food plants in Brazil: origin, economic value of pollination and pollinator shortage risk. Science of The Total Environment, 912: 169147.
Paz, F.S., Pinto, C.E., Brito, R.M., Imperatriz-Fonseca, V.L., & Giannini, T.C. (2021). Edible fruit plant species in the Amazon Forest rely mostly on bees and beetles as pollinators. Journal of Economic Entomology, 114: 710–722.
Pedro, S.R. (2014). The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology, 61: 348-354.
Porto, R.G., Almeida, R.F., Cruz-Neto, O., Tabarelli, M., Viana, B.F., Peres, C.A., Lopes, A.V. (2020). Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Security, 12: 1425–1442.
Porto, R.G., Cruz-Neto, O., Tabarelli, M., Viana, B.F., Peres, C.A., & Lopes, A.V. (2021). Pollinator-dependent crops in Brazil yield nearly half of nutrients for humans and livestock feed. Global Food Security, 31: 100587.
Posey, D. A. (1982). The Importance of Bees to Kayapó Indians of the Brazilian Amazon. The Florida Entomologist, 65: 452-458.
Potts, S., Imperatriz-Fonseca, V., Ngo, H., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J., & Vanbergen, A.J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540: 220–229.
Rader, R. et al. (2015). Non-bee insects are important contributors to global crop pollination. PNAS, 113: 146-151.
Raiol, R.L., Gastauer, M., Campbell, A.J., Borges, R.C., Awade, M., & Giannini, T.C. (2021). Specialist bee species are larger and less phylogenetically distinct than generalists in tropical plant–bee interaction networks. Frontiers Ecology and Evolution, 9: 699649.
Reddy, P.V.R., Verghese, A., Sridhar, V., & Rajan, V.V. (2013). Plant-Pollinator Interactions: A Highly Evolved Synchrony at Risk Due to Climate Change. In: Singh, H., Rao, N., Shivashankar, K. (eds) Climate-Resilient Horticulture: Adaptation and Mitigation Strategies. Springer.
Reilly, J.R. et al. (2020). Crop production in the USA is frequently limited by a lack of pollinators. Proceedings of Royal Society B, 287: 20200922.
Reilly, J., Bartomeus, I., Simpson, D., Allen-Perkins, A., Garibaldi, L., & Winfree, R. (2024). Wild insects and honey bees are equally important to crop yields in a global analysis. Global Ecology and Biogeography, 33: e13843.
Romeiro, L.A, Borges, R.C., da Silva, E.F., Guimarães, J.T.F., & Giannini, T.C. (2023). Assessing entomological collection data to build pollen interaction networks in the tropical Amazon forest. Arthropod-Plant Interactions, 17: 313–325.
Ropars, L., Affre, L., Thébault, É., & Geslin, B. (2022). Seasonal dynamics of competition between honey bees and wild bees in a protected Mediterranean scrubland. Oikos, 2022(4): e08915.
Sabino, W., Costa, L., Andrade, T., Teixeira, J., Araújo, G., Acosta, A.L., Carvalheiro, L., & Giannini, T.C. (2022). Status and trends of pollination services in Amazon agroforestry systems. Agriculture, Ecosystems and Environment, 335: 108012.
Sales, L.P., Rodrigues, L., & Masiero, R. (2021). Climate change drives spatial mismatch and threatens the biotic interactions of the Brazil nut. Global Ecology and Biogeography, 30: 117-127.
Salim, J. A. et al. (2022). Data standardization of plant-pollinator interactions. GigaScience, 11: 1-15.
Santos, G.M., & Antonini, Y. (2008). The traditional knowledge on stingless bees (Apidae: Meliponina) used by the Enawene-Nawe tribe in western Brazil. Journal of Ethnobiology and Ethnomedicine, 4: 19.
Santos, G.M.M., Aguiar, C.M.L., Genini, J., Martins, C.F., Zanella, F.C.V., & Mello, M.A.R. (2012). Invasive Africanized honeybees change the structure of native pollination networks in Brazil. Biological Invasions, 14: 2369–2378.
Schlindwein, C. (2004). Are oligolectic bees always the most effective pollinators? In: Freitas, B.M., Pereira, J.O.P. Solitary bees. Fortaleza, Imprensa Universitária, pp. 231-240.
Semba, R.D., Askari, S., Gibson, S., Bloem, M.W., & Kraemer, K. (2022). The Potential Impact of Climate Change on the Micronutrient-Rich Food Supply. Advances in Nutrition, 13: 80–100.
Silva, C.I., Ballesteros, P.L.O., Palmero, M.A., Bauermann, S.G., Evaldit, A.C.P., & Oliveira, P.E. (2010). Catálogo Polínico: Palinologia aplicada em estudos de conservação de abelhas do gênero Xylocopa no Triângulo Mineiro. Edufu, Uberlândia.
Silva, J.M.C., Barbosa, L.C.F., Leal, I.R., & Tabarelli, M. (2017) The Caatinga: understanding the challenges. In: Silva, J.M.C., Leal, I.R., Tabarelli, M. (eds) Caatinga: the largest tropical dry forest region in South America. Springer, pp 3–19.
Siopa, C., Carvalheiro, L.G., Castro, H., Loureiro, J., & Castro, S. (2024). Animal-pollinated crops and cultivars—A quantitative assessment of pollinator dependence values and evaluation of methodological approaches. Journal of Applied Ecology, 6: 1279-1288.
Souza-Junior, J.B.F., Teixeira-Souza, V.H.S., Oliveira-Souza, A., Oliveira, P.F., Queiroz, J.P.A.F., & Hrncir, M. (2020). Increasing thermal stress with flight distance in stingless bees (Melipona subnitida) in the Brazilian tropical dry forest: Implications for constraint on foraging range. Journal of Insect Physiology, 123: 104056.
Taconet, N., Méjean, A., & Guivarch, C. (2020). Influence of climate change impacts and mitigation costs on inequality between countries. Climatic Change, 160: 15–34.
Toledo-Hernández, M., Wanger, T.C., & Tscharntke, T. (2017). Neglected pollinators: Can enhanced pollination services improve cocoa yields? A review. Agriculture Ecosystems and Environment, 247: 137-148.
Toledo-Hernández, M., Tscharntke, T., Giannini, T.C., Solé, M., & Wanger, T.C. (2023). Hand pollination under shade trees triples cocoa yield in Brazil agroforests. Agriculture Ecosystems and Environment, 355: 108612.
Tregidgo, D., Campbell, A.J., Rivero, S., Freitas, M.A.B., & Almeida, O. (2020). Vulnerability of the Açaí Palm to Climate Change. Human Ecology, 48: 505-514.
Valido, A., Rodríguez-Rodríguez, M. C., & Jordano, P. (2019). Honeybees disrupt the structure and functionality of plant-pollinator networks. Scientific Reports, 9: 4711.
Vollet-Neto, A., Menezes, C., & Imperatriz-Fonseca, V. L. (2011). Brood production increases when artificial heating is provided to colonies of stingless bees. Journal of Apicultural Research, 50: 242–247.
Wheeler T., & Von Braun J. (2013). Climate Change Impacts on Global Food Security. Science, 341: 508-513.
Wieczorek, J., Bloom, D., Guralnick, R., Blum, S., Döring, M., Giovanni, R., Robertson, T., & Vieglais, D. (2012) Darwin Core: An Evolving Community-Developed Biodiversity Data Standard. PLoS ONE, 7: e29715.
Wietzke, A., Westphal, C., Gras, P., Kraft, M., Pfohl, K., Karlovsky, P., Pawelzik, E., Tscharntke, T., & Smit, I. (2018). Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agriculture, Ecosystems and Environment, 258: 197-204.
Wilkinson, M.D. et al. (2016). The FAIR Guiding Principles for Scientific Data Management and Stewardship. Scientific Data, 3: 160018.
Wolowski, M., Agostini, K., Rech, A.R., Varassin, I.G., Maués, M., Freitas, L., Carneiro, LT., Bueno, R.O., Consolaro, H., Carvalheiro, L., Saraiva, A.M., & Silva, C.I. (2019). Relatório temático sobre polinização, polinizadores e produção de alimentos no Brasil. REBIPP, Espírito Santo.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Giannini Tereza Cristina, Guaraci Duran Cordeiro, Wilian França Costa, André Luiz Acosta, Wiliam Oliveira Sabino, Leonardo Miranda, Vera Lúcia Imperatriz-Fonseca, Antônio Mauro Saraiva

This work is licensed under a Creative Commons Attribution 4.0 International License.
Sociobiology is a diamond open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).